
HOWTO start the UHDAS GUI and collect data
remotely (ssh only; no screen share)

Core commands and concepts are at the top, details follow.

NOTE: Examples of commandline output come from different sessions -- at present they only
give a flavor of what to expect.

Core commands

(1) ssh in to the UHDAS computer on the ship

Do whatever you have to for that ship

(2) Start a “screen session”

(see below)

(3) In the “screen” session:
(4)

(a) Ensure that any graphics which show up will go to the console at sea. Run this:

export DISPLAY=:0.0

(b) It is UP TO YOU to make sure it is OK to quit the DAS etc.

(c) Quit the existing version:

DAS.py --quit

(d) Start DAS.py in the “screen session”

DAS.py --read_stdin

(e) Start a cruise (it is OK to re-use a cruise name)

Julia Hummon
Highlight

Julia Hummon
Highlight

Julia Hummon
Highlight

start_cruise test-2019-08-05_test1

(f) Start recording (annoying to have “start_logging” here)

start_logging

(g) Stop recording

stop_logging

(h) End cruise

end_cruise

(i) Quit the GUI

quit

How to tell what is happening with UHDAS without a GUI

Specifically, as different parts of UHDAS start up, they write messages to files.

The components of UHDAS are:

- “Flag” file is a file in /home/adcp/flags with the PID of the program running
- “Log files” are in /home/adcp/log
- Processes are found with “ps -ef | grep xxx”

status action DAS (or other) program Flag file Log file(s) description

DAS

is

running

“Start the

UHDAS GUI”

DAS.py DAS.running DAS_main.log UHDAS GUI

is up,

standing by

Cruise

is active

“Click Start

Cruise; fill

In the name”

DAS_while_cruise.py DAS_while_cr

uise.running

DAS_while_cr

uise.log

Cruise

directory

was made;

ready for

acquisition

DAS is “Click Start ser_bin DAS.logging asc2bin.log Acquisition

Julia Hummon
Highlight

Julia Hummon
Highlight

Julia Hummon
Highlight

Julia Hummon
Highlight

Julia Hummon
Highlight

logging Recording” ser_asc (for serial)

udp_asc (for udp)

processes

spawned

processing

is

occurring

(happens

after

Recording

starts)

DAS_while_logging.lo

g

DAS_while_lo

gging.runnin

g

(timers go

Off for

Various

processes)

Web site

figures are

populated

Speedlog

Is running

(happens

 after

Recording

starts)

DAS_speedlog.log DAS_speedlog

.running

DAS_speedlog

.py

Web

Speedlog

should show

values

(1)Look in /home/adcp/flags directory to see what is running

status action Flag file Description -- what SHOULD be happening

DAS is

running

Start

UHDAS

GUI

DAS.running UHDAS GUI is up, standing by

Cruise

is active

Start

Cruise

DAS_while_cruise.running Cruise directory was made; ready

for acquisition

DAS is

Logging and

processing

Is occurring

Speedlog is

running

Start

Recording

DAS.logging

DAS_while_logging.runnin

g

DAS_speedlog.running

Acquisition processes spawned;

Web site is update regularly

Speedlog is running

(2)Look at processes to see what is running:

Is the GUI up?

ps -ef | grep DAS.py

If yes, you will get something like this:

adcp 13231 11354 2 16:53 pts/7 00:00:11 /usr/bin/python3

/usr/local/currents/bin/DAS.py --read_stdin

adcp 14354 10580 0 17:01 pts/1 00:00:00 grep DAS.py

Julia Hummon
Highlight

Julia Hummon

Julia Hummon

Julia Hummon

Julia Hummon
- one long commandline (underlined)
- shows ‘yes’ DAS.py’ is running�

Is a cruise active?

ls -l /home/adcp # if yes, there is a symbolic link ‘cruise’ pointing to cruise dir

If yes, you would see something like this:

lrwxrwxrwx 1 adcp efiring 18 Aug 6 16:53 cruise -> /home/data/rtest02

Is acquisition occurring?

ps -ef | grep _bin # acquisition from ADCPs
ps -ef | grep _asc # NMEA messages

ticurrents02:PY3(~)$ ps -ef | grep _bin
adcp 13321 1 6 16:54 pts/7 00:00:36 /usr/local/bin/ser_bin -y 2019

-P ttyUSB0 -b 38400 -d /home/data/rtest02/raw/wh300 -i

/tmp/SerialLogger/inpipe.ttyUSB0 -o /tmp/SerialLogger/outpipe.ttyUSB0 -T

1565110495 -f zzz -F -m 1 -H 2 -e raw -lE -c -O -I -Z tcp://127.0.0.1:38010

ticurrents02:PY3(~)$ ps -ef | grep _asc
adcp 13326 1 0 16:54 pts/7 00:00:00 /usr/local/bin/ser_asc -y 2019

-P ttyUSB2 -b 9600 -d /home/data/rtest02/raw/gyro -i

/tmp/SerialLogger/inpipe.ttyUSB2 -o /tmp/SerialLogger/outpipe.ttyUSB2 -T

1565110495 -f zzz -F -m 1 -H 2 -e hdg -c -Y2 $HEHDT

adcp 13329 1 0 16:54 pts/7 00:00:00 /usr/local/bin/ser_asc -y 2019

-P ttyUSB3 -b 9600 -d /home/data/rtest02/raw/gpsnav -i

/tmp/SerialLogger/inpipe.ttyUSB3 -o /tmp/SerialLogger/outpipe.ttyUSB3 -T

1565110495 -f zzz -F -m 1 -H 2 -e gps -c -Y2 $INGGA $GPGGA $PASHR

Is speedlog running?

ps -ef | grep DAS_speedlog.py #will be here if running

If yes:

adcp 13338 1 2 16:54 pts/7 00:00:13 /usr/bin/python3

/usr/local/currents/bin/DAS_speedlog.py replace

adcp 15227 10580 0 17:05 pts/1 00:00:00 grep DAS_speedlog.py

Is processing occurring?

Julia Hummon
Highlight

Julia Hummon
Highlight

Julia Hummon
Highlight

Julia Hummon
Highlight

Julia Hummon
Highlight

Julia Hummon

Julia Hummon
yes, current cruise is called “rtest02”嗡

Julia Hummon

Julia Hummon

Julia Hummon

Julia Hummon
yes, one ADCP and
2 ascii streams are being logged�

Julia Hummon

Julia Hummon
yes, DAS_speedlog.py is running

This is not the way to find out: processing occurs sporadically, not “always running”

Look in /home/adcp/log/DAS_while_logging.log, and

- Figures have recent dates

(3)Look in the /home/adcp/log directory to see what messages are
there.

DAS_main.log

tail -300 /home/adcp/log/DAS_main.log # last 300 lines
less /home/adcp/log/DAS_main.log # page through using ‘less’

Entries include:

starting the GUI
2018-12-07 20:34:44,801 INFO DAS Starting DAS.py

2018-12-07 20:34:44,817 INFO DAS DISPLAY is :0.0

starting a cruise

2019-08-01 10:47:15,273 INFO cruisesetup Initializing yearbase from

current date: 2019

2019-08-01 10:47:17,183 INFO cruisesetup StartCruise, new, cruiseid is

ar35-05

start logging (start recording)

2019-08-03 16:56:39,987 INFO DAS entering StartLogging, resume =

0, auto = False

2019-08-03 16:56:40,004 INFO DAS Commands for wh300:

[commands snipped]
[command block exists for each instrument]

2019-08-05 20:43:02,179 INFO DAS Logging started

stop recording

Julia Hummon
Highlight

Julia Hummon
Highlight

2019-07-29 08:39:58,448 INFO DAS Logging stopped

end cruise
2019-07-29 08:40:02,603 INFO cruisesetup EndCruise, cruiseid is ar35-04

kill the UHDAS GUI
2019-07-29 08:40:07,105 INFO DAS Closing DAS GUI

DAS_while_cruise.log

- DAS_while_cruise.py controls two things:
- Backups
- Updating the ‘reports’ directory

DAS_while_logging.log

- DAS_while_logging.py controls:
- run_lastensq.py (stages the 5-min averages and makes the 5-min profile plot)
- run_quick.py (puts 5-min averages into database)
- run_3dayplots (makes contour and vector plots on web page)
- [many others]
- Each of these has its own log file (eg. 3dayplots_os150bb.log

- These processes and their arguments AS CALLED are all listed in
/home/adcp/uhdas_tmp/repeaters.txt

DAS_speedlog.log

- Lists speedlog parameters and says when it is starting and stopping
- See “speedlog” Troubleshooting HOWTO

term*.log

Each instrument gets a new log file every time the UHDAS GUI starts.
Example:

arcurrents01:(log)$ ls -l term*

-rw-r--r-- 1 adcp efiring 9748 Jul 29 08:40 termos150log2019_173_56340.txt

-rw-r--r-- 1 adcp efiring 8952 Aug 5 20:42 termos150log2019_212_38819.txt

-rw-r--r-- 1 adcp efiring 19572 Jul 29 08:40 termos38log2019_173_56340.txt

-rw-r--r-- 1 adcp efiring 8989 Aug 5 20:42 termos38log2019_212_38819.txt

-rw-r--r-- 1 adcp efiring 13728 Jul 29 08:40 termwh300log2019_173_56340.txt

-rw-r--r-- 1 adcp efiring 3432 Aug 5 20:42 termwh300log2019_212_38819.txt

Each file has

- A wakeup message (eg. model and firmware)

Ocean Surveyor Broadband/Narrowband ADCP

Teledyne RD Instruments (c) 1997-2008

All rights reserved.

Firmware Version: 23.17

- A dialog with the instrument saying the commands that were sent
- A dump of all the commands and the instrument values

Other notes:

- Warnings are stored in files ending in *.warn
- Older files are moved out of /home/adcp/log to /home/adcp/morgue (for later

examination)

Details about “screen”

When you run a “screen” session you are in a bash shell as if you had logged in, but several
things are different:

(1) You can “detach” from a screen session and you can “reattach” to a screen session
(2) If you “detach” from the screen session, any process that you started will KEEP

RUNNING, whereas other mechanisms (“nohup” and backgrounding) do not seem as
reliable for this.

(3) Screen uses control key combinations so watch out! For example control-a followed by
another letter (or just using other control sequences) is the way to make “screen” do
things, so if you are editing with emacs or using emacs shortcuts (which use control-a)
you will be surprised. Screen uses other commands too, but typing normal bash
commands won’t get you into trouble.

Control sequences are often written in two ways

control-a

Julia Hummon
Highlight

^a

“Screen” control sequences do NOT have a space, but they are normally written that way for
easier reading. The following are the same:

control-a ? # how we write it

^a? # what you type

(4) You can see all the commands that can be run inside screen by typing

control-a ?

(5) Here are some common scenarios:
(a) Start a screen session

screen

(b) Detach from a screen session

From within a screen session type

control-a d

(c) Ask what screen sessions exist

screen -ls

In this example the results are:

There are screens on:

15760.pts-3.moli (08/05/2019 09:49:29 AM) (Detached)

15754.pts-3.moli (08/05/2019 09:49:20 AM) (Detached)

2 Sockets in /run/screen/S-jules .

(d) Reattach to an existing screen session
If there is only one existing session,

screen -r

If there are multiple screens (as above), choose one:

screen -r 15760.pts-3.mol

Julia Hummon
Highlight

Julia Hummon
Highlight

Julia Hummon
Highlight

Julia Hummon
Highlight

Julia Hummon
Highlight

Julia Hummon
Highlight

Julia Hummon
Highlight

(e) Answer the question: Am I in a screen session?
One simple way to test is to ask for help.

control-a ?

Answer: If you get a screen full of instructions, you are in “screen”
Answer: If you get a ‘?’ then you are in a bash shell, not s a screen session

(6) Advanced: you can use screen to monitor serial data:
(a) Syntax:

screen /dev/ttyUSB3 4800

(b) If there is something coming in, you will see it
(c) To QUIT (which is probably what you want to do)

control-a \

(then it asks if you want to do that; type the letter y for YES)

(d) ERROR: If your serial feeds are having trouble, check if you used “detach”

instead of quit
(i) check the files in /var/lock and see if you have a lock file there. A file with

this name would indicate a process is running which is using that serial
port (such as ‘screen’). The file contains the process ID so you can tell
what is using the port.

/var/lock/LCK..ttyUSB3

(ii) check the existing screen sessions to find out if one is still running. If you

are still showing data in a ‘screen session,
1) Reattach to it
2) Use control-a \ to EXIT rather than detaching

J.Hummon
2019-08-05

Julia Hummon
Highlight

Julia Hummon
Highlight

Julia Hummon
Highlight

Julia Hummon
Highlight

Julia Hummon
Highlight

