
1 Random Variables and Probability

A random, or stochastic, process results in outcomes that cannot be predicted precisely. The

outcome of a random process, a random variable, is described by its probability of occurrence.

Probabilities range from 0, no chance, to 1, a certainty.

There are different interpretations of probability, notably the frequentist and Bayesian

views. Frequentists consider a set of repeated experiments or trials with probability expressed

by the frequency of occurrence, i.e., if A occurs nA times out of n experiments, then the

probability of A is

Pr(A) = nA/n. (1)

In the frequentist view, Pr(A) is assumed to approach the true probability of A as n→∞. In

the Bayesian approach, existing knowledge is used to assign probability beforehand, the prior

probability, which is updated to a posterior probability based on the data, or evidence, and

the application of Bayes’ theorem. Here we will examine frequentist methodologies (e.g.,

confidence intervals, hypothesis testing) commonly used in the analysis of oceanographic

data.

There are two related functions that assign probabilities to a random variable. The

cumulative distribution function (CDF) specifies the probability that the random variable,

X, is less than or equal to a specific value x,

FX(x) = Pr(X ≤ x). (2)

The derivative of the CDF is the probability density function (PDF)

fX(x) =
dFX
dx

. (3)

It follows that

Pr(a < X ≤ b) =

∫ b

a

f(x)dx = FX(b)− FX(a). (4)

Given the PDF of fX(x), we can compute the PDF of a random variable that is a function

of X, Y = g(X), provided that g is invertible, X = g−1(Y ). The PDF for Y is

fY (y) =
∑
i

fX(xi)

| dg
dx
|xi

, (5)

where the xi’s are the solutions to y = g(xi).
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2 Expected Value and Moments

The mean or first moment of a random variable X is

E(X) =

∫ ∞
−∞

xfX(x)dx = µ, (6)

where the expected value, E, of any real single-valued continuous function g(X) of the random

variable X is

E(g(X)) =

∫ ∞
−∞

g(x)fX(x)dx. (7)

The variance or second central moment of X is

V ar(X) =

∫ ∞
−∞

(x− µ)2fX(x)dx = σ2, (8)

where σ is the standard deviation. In general the rth central moment is given by

E((X − µ)r) =

∫ ∞
−∞

(x− µ)rfX(x)dx. (9)

Statistical moments are comparable to the moments of a solid body. The PDF is analogous

to the density of the body, the mean to the center of mass, and the variance to the moment

of inertia.

The skewness of a distribution is the third standardized moment,

γ1 = E

((
X − µ
σ

)3
)
, (10)

which measures the asymmetry of the distribution about the mean. For a unimodal distri-

bution, a negative skewness implies that the left tail of the PDF is more pronounced than

the right; a positive skewness has a more pronounced right tail. The kurtosis, or fourth

standardized moment, measures the peakedness of a unimodal distribution.

3 The Normal and Related Distributions

A probability function with broad application is the normal or Gaussian distribution. The

normal PDF is a function of the mean and variance,

fX(x) =
1√
2πσ

exp

(
−(x− µ)2

2σ2

)
. (11)

The notation X ∼ N(µ, σ2) is used to indicate that X is normally distributed.

2



It follows from eq.(11) that the normal distribution is symmetric about the mean, all odd

moments are zero, and that the mean = mode = median. Further, if

i) X ∼ N(µ, σ2) and a and b are real numbers, then aX + b ∼ N(aµ+ b, (aσ)2),

ii) X ∼ N(µX , σ
2
X) and Y ∼ N(µY , σ

2
Y ) are independent random variables, then X±Y ∼

N(µX ± µY , σ2
X + σ2

Y ).

iii) X ∼ N(µ, σ2), then a normalized random variable Z = X−µ
σ

can be defined that has

a standard normal distribution Z ∼ N(0, 1).

A number of other frequently used distributions follow from the normal distribution.

Consider a set of random variables X1, X2, ..., Xn that are independent and identically

distributed as N(0, 1), and set Y equal to the sum of the squares,

Y = X2
1 +X2

2 + ...+X2
n.

Then Y is considered to have a chi-squared distribution with n degrees of freedom, denoted as

Y ∼ χ2(n). The degrees of freedom measure the number of independent pieces of information

in an estimate.

If X and Y are independent random variables and X ∼ N(0, 1) and Y ∼ χ2(n), then

Z = X√
Y/n

has a t distribution with n degrees of freedom, denoted as Z ∼ t(n).

If Y1 and Y2 are independent random variables with Y1 ∼ χ2(n1) and Y2 ∼ χ2(n2), then

Z = Y1/n1

Y2/n2

has a Fdistribution with n1 and n2 degrees of freedom, denoted by Z ∼ F (n1, n2).

4 Central Limit Theorem

The Central Limit Theorem explains why the normal distribution applies to a wide range

of random variables, and it provides a guideline for assessing when a normal distribution is

likely to apply.

3



Let X1, X2, ..., Xn be n independent, identically distributed random variables, with the

mean and variance of each random variable Xi given by µi and σ2
i . Define a new random

variable which is a linear combination of the Xi’s,

Y =
n∑
i=1

aiXi, (12)

where the ai are arbitrary constants. The mean and variance of Y are

µY = E

(
n∑
i=1

aiXi

)
=

n∑
i=1

aiE(Xi) =
n∑
i=1

aiµi, (13)

σ2
Y = E

(
(Y − µY )2

)
= E

(
n∑
i=1

ai(Xi − µi)2
)

=
n∑
i=1

a2iσ
2
i . (14)

The Central Limit Theorem states that as n → ∞, Y ∼ N(µY , σ
2
Y ). In practice, the

distribution of Y tends to be close to normal by n ≈ 30. Thus, any variable that is the

sum of other variables through averaging, integration, etc. tends to be normally distributed,

regardless of the distribution of the summed variables.

5 Example: Distribution Functions and Ocean Waves

Ocean surface waves provide an intuitive example of how distribution functions can be used

to describe various aspects of a random process. A measure of ocean surface waves is the

water surface elevation (η) about the mean still water line (z = 0). The wave height (H) can

be defined as the distance between the highest (crest) and lowest (trough) elevations over

the course of one wavelength (λ) or wave period (T ).

Consider a time series of n waves measured at a fixed position. A common overall measure

of the size of the wave field is the significant wave height (H1/3 ), defined as the average of

the 1/3 largest waves [Sverdrup and Munk, 1947]. The choice of 1/3 is arbitrary but has

remained in use because H1/3 is comparable to what an observer at sea would estimate as

the typical height of a wave field. In general, Hp is the average of the highest pn waves in a

record, with p ≤ 1. A related measure of a wave record of n waves is the root-mean-square

(rms) wave height,

Hrms =

√√√√ 1

n

n∑
i=1

H2
i . (15)

Let’s treat the wave field as the sum of random waves generated from multiple sources.

Based on the Central Limit Theorem, it follows that η ∼ N(0, σ2
η), where ση is the standard
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deviation of the surface elevation. For narrow-banded seas, or a superposition of waves

within a narrow range of periods, Longuet-Higgins [1952] showed that the PDF of H is

given by the Rayleigh distribution.

f(H) =
2H

H2
rms

exp

(
−H2

H2
rms

)
, (16)

where

H2
rms = 8σ2

η. (17)

The CDF for wave height is then

F (H) =

∫ H

0

f(H ′)dH ′ = 1− exp
(
−H2

H2
rms

)
. (18)

Given the PDF of H, we can compute the most probable wave

df(H)

dH
=

2

H2
rms

exp

(
−H
H2
rms

)(
1− 2H2

H2
rms

)
= 0⇒ Hmp =

Hrms√
2

= 2ση. (19)

and the mean wave height

H =

∫ ∞
0

HfH(H)dH =

√
π

2
Hrms = 0.886Hrms. (20)

The significant wave height is

H1/3 =

∫ −∞
H1/3

Hf(H)dH = 1.416Hrms. (21)

Other characteristic wave heights include H1/10 = 1.800Hrms and H1/100 = 2.359Hrms

The probability, Q , that H will exceed a threshold value HQ is

Q(Hq) = Pr(H > HQ) = 1− F (HQ) = exp

(−H2
Q

H2
rms

)
. (22)

This can be also written as the value of H expected to be exceeded with probability Q,

HQ = Hrms

√
ln

(
1

Q

)
. (23)

For example, Q = 1/3, H1/3 = 1.048Hrms.

Longuet-Higgins, M. S., 1955: On the statistical distribution of the heights of sea waves, J.

Mar. Res., 11, 245-266.

Sverdrup, H.U., and W. H. Munk, 1947: Wind, sea, and swell; theory of relations for

forecasting. U. S. Navy Hydrographic Office, H. O., Publ. No. 601.
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6 Joint and Conditional Distributions

The joint probability of occurrence of a pair of random variables, X and Y , is specified by

the joint cumulative distribution function

FX,Y (x, y) = Pr(X ≤ x & Y ≤ y), (24)

and the joint probability density function

fX,Y (x, y) =
∂2FX,Y (x, y)

∂x∂y
. (25)

It follows that

Pr(X ≤ a, Y ≤ b) = FX,Y (a, b) =
∫ a
−∞

∫ b
−∞ fX,Y (x, y)dydx,

and

Pr(X ≤ a, Y any) = FX,Y (a,∞) =
∫ a
−∞

∫∞
−∞ fX,Y (x, y)dydx.

The conditional probability density of Y given X is

fY (y|X = x) =
fX,Y (x, y)

fX(x)
(26)

for fX(x) > 0. When the occurrence of Y is not influenced by X, then

fY (y|X = x) = fY (y), (27)

and

fX,Y (x, y) = fX(x)fY (y), (28)

in which case X and Y are independent.

7 Covariance and Correlation

The degree to which two random variables (X and Y ) vary together is measured by the

covariance

CXY = E ((X − µX)(Y − µY )) = E(XY )− µXµY (29)

where µx = E(X) and µy = E(Y ). If X and Y are independent, then CXY = 0 (CXY = 0

does not necessarily imply independence).

The correlation is defined as the covariance normalized by the standard deviations of

each of the variables,

ρXY =
CXY
σXσY

. (30)

The correlation ranges from -1 to 1.
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8 Joint Normal Distribution

Two random variables X1 and X2 are joint normally distributed if their sum aX1 + bX2 is

normally distributed for all a and b. The joint normal PDF is

fXY (x, y) = Aexp

(
− 1

2(1− ρ2XY )

[
(x− µX)2

σ2
X

− 2ρXY
(x− µX)(y − µY )

σXσY
+

(y − µY )2

σ2
Y

])
(31)

where

A =
1

2πσXσY
√

1− ρ2XY
, (32)

and ρXY is the correlation coefficient. When X and Y are independent (i.e., ρXY = 0),

fXY = fXfY .

9 Estimators

Statistical estimation involves the use of a model, or estimator, to predict a desired parameter

or set of parameters from available data. For example, an estimate of the expected value,

µX = E(X), is the sample mean given by

µ̂X = X =
1

n

n∑
i=1

Xi, (33)

with the caret symbol used to indicate an estimate. The sample mean varies with the sample.

Thus, an estimate is itself a random variable subject to its own probability distribution,

known as the sampling distribution.

Estimators are evaluated by how well the sample estimate represents a so-called true

value, which might be the value obtained from all available data in a population, or from an

infinite set of identically prepared experiments. Desirable properties of an estimator include:

i) on average, the estimate of some parameter, φ̂, should be equal to the true value, φ, or in

other words that the estimator is unbiased

B = E(φ̂− φ) = 0. (34)

Otherwise B is the bias of the estimate.

ii) The estimator should be efficient in the sense that it yields a small mean square error

(MSE), measured as the variance of the estimate about the true value,

E
(

(φ̂− φ)2
)

= var(φ̂) +B2. (35)
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iii) The estimator should also be consistent, such that φ̂→ φ as n→∞.

For the case of the sample mean (eq. 33),

E(X) = E

(
1

n

n∑
i=1

Xi

)
=

1

n

n∑
i=1

E(Xi) = µX .

so the estimate is unbiased. The MSE is

E
(
(X − µX)2

)
= var(X) +B2,

but the estimate is unbiased, B2 = 0, so

MSE = var(X) = E

( 1

n

n∑
i=1

Xi − µX

)2
 .

If the Xi’s are independent, then

var(X) =
1

n2

n∑
i=1

E
(
(Xi − µX)2

)
=
σ2
X

n
.

The standard deviation of X is σX/
√
n, which is also referred to as the standard error of the

sample mean.

We can evaluate the efficiency of the sample mean versus other estimators of the mean.

For example, the sample mean is a more efficient estimator than the median, which has a

56% higher MSE. Finally, because the sample mean MSE → 0 as n→∞, the sample mean

is a consistent estimate.

For the sample variance, let’s consider a more general estimator of the form

s2k =
1

k

n∑
i=1

(Xi −X)2,

and try to select k to optimize our estimate. The bias for this estimator is

B = E(s2k)− σ2
X =

(
n− 1− k

k

)
σ2
X .

An unbiased estimator is obtained for k = n− 1. Selecting k = n leads to B = −σ2
X/n. The

MSE is

E =
((
s2k − σ2

X

)2)
= var(s2k) +B2 =

2(n− 1)

k2
σ4
X +

(n− 1− k)2

k2
σ4
X .

The minimum MSE occurs for k = n + 1. This illustrates that in some instances the best

estimator will depend on the properties to be optimized. The sample variance usually is

specified as k = n− 1.
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10 Confidence Intervals

A probabilistic measure of an estimator is given by the confidence interval. Confidence

intervals are derived by defining a function of φ̂ and φ that has a known sampling distribution.

If the probability distribution off ϕ = g(φ̂, φ) is known, then a probability statement can be

constructed such that

Pr [ϕL < ϕ < ϕU ] = 1− α. (36)

where 0 < α < 1. This can be rewritten as

Pr [φL < φ < φU ] = 1− α, (37)

where φL and φU are functions of ϕL, ϕU , and φ̂. The interval between φL and φU is the

100(1-α)% confidence interval for φ.

For example, define Z such that

Z =
φ̂− φ
σφ

∼ N(0, 1), (38)

where E(φ̂) = φ (i.e., an unbiased estimate), var(φ̂) = σ2
φ, and Z is a standard Normal

random variable. We can construct confidence intervals for Z as

Pr[Zα/2 < Z < Z1−α/2] = 1− α. (39)

Substituting for Z, noting that Zα/2 = −Z1−α/2 for a standard Normal variable, and solving

for φ gives

Pr[φ̂− Z1−α/2σφ < φ < φ̂+ Z1−α/2σθ] = 1− α. (40)

We thus have defined a confidence interval around the estimate φ̂ within which we expect to

find the true value φ with probability 1− α.

Confidence intervals for µX when σX is known

Based on the Central Limit Theorem, we know that the sample mean (X) approaches a

Normal distribution for large n. Thus we can construct a standard Normal variable Z such

that

Z =
X − µX
σX/
√
n
. (41)

Recall that σX is the standard deviation of X, and σX/
√
n is the standard deviation of X.

We then can construct a confidence interval for the true mean as

X − Z1−α/2
σX√
n
< µX < X + Z1−α/2

σX√
n
. (42)
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Confidence intervals for µX when σX is unknown

Typically the true variance, σX , is not known. Confidence intervals for µX can be specified

when X is Normally distributed. Using the sample variance (S2) we construct a new random

variable

t =
X − µX
S/
√
n
, (43)

where

S2 =
1

n− 1

n∑
i=1

(Xi −X)2, (44)

based on n independent Xi. W. Gosset, an employee of Guinness Breweries, published the

solution for the PDF for t under the pseudonym Student in 1908, hence it became known as

Student’s t-distribution, or the t-distribution, with ν = n− 1 degrees of freedom. Recall that

the random variable t has a Student’s t-distribution if it is in the form

t =
z√
y/n

, (45)

where z ∼ N(0, 1) and y is chi-square distributed. It follows that the confidence interval for

the true mean is

X − t1−α/2,ν
S√
n
< µX < X + t1−α/2,ν

S√
n
. (46)

Confidence intervals for σ2
X when µX is unknown

Confidence intervals for the variance are obtained by appealing to the chi-square (χ2)

distribution. The expected value and variance of χ2 are E (χ2) = n and var (χ2) = 2n. We

first transform the sample variance into a χ2 variable,

(n− 1)S2

σ2
X

=
n∑
i=1

(
Xi −X
σX

)2

= χ2
ν (47)

with ν = n− 1 degrees of freedom. The associated probability statement is

Pr

(
χ2
α/2,ν <

(n− 1)S2

σ2
X

< χ2
1−α/2,ν

)
= 1− α, (48)

which yields the confidence interval for the true variance,

(n− 1)S2

χ2
1−α/2,ν

< σ2
X <

(n− 1)S2

χ2
α/2,ν

. (49)

Note that the confidence intervals are asymmetric about S2.
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11 The correlation coefficient

The correlation coefficient provides a measure of the linear association between two ran-

dom variables. The sample correlation coefficient between two random variable Xi, Yi, i =

1, 2, ..., n is

r =

∑n
i=1(Xi −X)(Yi − Y )

[
∑n

i=1(Xi −X)2]1/2[
∑n

i=1(Yi − Y )2]1/2
. (50)

The correlation coefficient provides a normalized measure of covariability such that −1 ≤
r ≤ 1.

Confidence intervals for the correlation coefficient can be constructed using Fisher’s z-

transform,

z =
1

2
ln

(
1 + r

1− r

)
. (51)

If X and Y are n independent random variables with a joint Normal distribution, then

z ∼ N

(
1

2
ln

(
1 + ρ

1− ρ

)
,

1√
n− 3

)
. (52)

where ρ is the true correlation. Confidence intervals for ρ can be computed.

A more typical measure of the statistical significance of the correlation coefficient is based

on a hypothesis test. A hypothesis test is used to assess whether an estimate is the result of

random chance or not. The test is posed in terms of a null hypothesis, Ho, which typically is

that the estimate is the result of random chance (e.g., the true correlation is zero). A sample

distribution is needed to evaluate the null hypothesis, which is either accepted or rejected

based on the p-value, defined as the probability of obtaining a value at least as high as the

estimate given the null hypothesis. The p-value can be evaluated for the right or left tail

of the sample distribution (one-sided), or both (two-sided). When the p-value falls below a

specified significance level α, the null hypothesis is rejected at the (1 − α)100 significance

level. Rejection of Ho suggests that the complement of Ho, or the alternative hypothesis,

may be true. A p-value > α does not necessarily mean that Ho is true, only that we cannot

reject Ho given the available data. For the case of the correlation coefficient, the variable

t = r

√
n− 2

1− r2
(53)

is assumed to be t-distributed with n− 2 degrees of freedom.
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12 Linear regression

Regression analysis is used in a variety of applications, for example to quantify relationships

between two or more variables, to test causal hypotheses, to perform extrapolations and

forecasts, and to identify trends in time series. A linear regression is an estimate of a

dependent output variable yi, i =1, 2, ..., n in terms of a linear superposition of j = 1, 2, ...,

k input variables

ŷi =
k∑
j=1

bjxij. (54)

Coincident measurements of the input and output variables are required to obtain the bj’s.

A common regression method is ordinary least squares (OLS), which seeks to minimize

the sum of squares of the residual error,

E2 =
n∑
i=1

ε2i =
n∑
i=1

(yi − ŷi)2 . (55)

The OLS solution is obtained by computing the bj’s that satisfy ∂E2/∂bj = 0. The OLS

estimate assumes that the error lies in the observed yi. In general there are other cost

functions besides E2 that can be minimized, for example, the absolute value of the residual

error or the diagonal deviation between the observations and the model function. There also

are techniques to account for errors in the input variables.

To illustrate the OLS method, let’s consider the simple case of a straight-line fit relating

yi to an input xi plus a mean offset

ŷi = a+ bxi. (56)

The residual sum of squares is

E2 =
n∑
i=1

[yi − (a+ bxi)]
2 ,

and the coefficient’s that minimize the E2 are the slope

b̂ =

n∑
i=1

(xi − x)(yi − y)

n∑
i=1

(xi − x)2
, (57)

sometimes referred to as the regression coefficient, and the intercept

â = y − b̂x. (58)
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The regression coefficient can be written as

b̂ =
cov(x, y)

σ2
x

. (59)

A measure of the quality of the fit is given by the correlation coefficient

r̂ =
cov(x, y)

σxσy
. (60)

The correlation and regression coefficients are related by

b̂ =
σy
σx
r̂. (61)

The regression coefficient measures the change in y given a unit change in x. Scale changes

in the data will alter the regression coefficient but not the correlation coefficient. The mean

square error of the residual, or the unaccounted for variance, can be expressed as

MSE = σ2
y(1− r̂2). (62)

The higher the correlation between x and y, the smaller the MSE of the OLS estimate.

Assuming that the residual error is serially independent, the standard deviations of the

intercept and slope are

σ̂b =
σ̂ε[

n∑
i=1

(xi − x)2
]1/2 ,

σ̂a = σ̂ε

 1

n
+

x2

n∑
i=1

(xi − x)2


1/2

,

where

σ̂ε =

√√√√ 1

n− 2

n∑
i=1

ε2i .

is an unbiased estimate of the standard deviation of the residual error. Confidence intervals

can be obtained by assuming that the fitted parameters and residual error are Normally

distributed

tν =
b̂− b
σb

,

tν =
â− a
σa

,
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where tν is a Student’s t pdf with ν = n− 2 degrees of freedom. The confidence interval for

any specific value of ŷi is given by

tν =
yi − ŷi

σε

 1
n

+ (xi−x)2
n∑

i=1
(xi−x)2

1/2
.

13 Multiple linear regression

Extending OLS to multiple inputs yields

y =



y1

y2

.

.

.

yn


X =


x11 x12 . x1k

x21 x22 . x2k

. . . .

xn1 xn2 . xnk

 (63)

with our estimate given by ŷ = X · b, where

b =



b1

b2

.

.

.

bk


. (64)

Minimization of the residual sum of squares yields the normal equations

(X′X) b = X′y, (65)

and the OLS estimate for b is

b̂ = (X′X)
−1

X′y. (66)

The mean square error of the residual is

MSE =
y′y

n− 1

(
1− y′XD−1X′y

)
(67)
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where D−1 = (X′X)−1. We can see that the MSE decreases as the covariances between the

inputs and output increase, whereas the MSE increases as the covariances between the input

variables increases. The quality of the fit is measured by the coefficient of determination,

R2 = 1−

n∑
i=1

(yi − ŷi)2

n∑
i=1

(yi − y)2
. (68)

The Analysis of Variance (ANOVA) is used for significance tests of multiple regressions

based on the amount of variance accounted for by the regression model. The regression

model can be rewritten as

(yi − y) = (ŷi − y) + (yi − ŷi), (69)

where the first term is the variation of the observed output variable about its sample mean,

the second is the variation of the estimate, or model, about the mean, and the third is the

residual value. Squaring this equation and summing over the observations gives
n∑
i=1

(yi − y)2 =
n∑
i=1

2(ŷi − y)2 +
n∑
i=1

(yi − ŷi)2, (70)

which can be referred to as SST = SSM + SSE where SS is the sum of squares and the

T, M, E refer to the total, model, and error terms. In this notation, the correlation of

determination is

R2 =
SSM

SST
. (71)

The ANOVA is based on the sample distribution

F =
MSM

MSE
(72)

where MSM = SSM/(m − 1), MSE = SSE/(n −m), m is the number of inputs to the

regression that each have n independent values, and a mean component is included in the

regression inputs. F has a F distribution that can be used to test the null hypothesis that

b1 = b2 = .. = bm = 0. A p-value based on F that is < α would lead to a rejection of the

null hypothesis.

Standard deviations, Sbj , for the regression coefficients (bj, j = 1, 2, ..,m) can be obtained

from

E = MSE (x′x)
−1
, (73)

where Sbj is the square root of the jth diagonal term of E. Assuming that the inputs are joint

Normally distributed, independent random variables, then confidence intervals are obtained

from

bj = b̂j ± tα/2,n−mSbj . (74)
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14 Serial correlation and degrees of freedom

In the statistical inferences considered so far (confidence intervals, hypothesis tests), the data

(or in the case of the linear regression the residual error) have been treated as independent,

which has simplified specifications of the mean square error and the number of degrees of

freedom. In practice, an oceanographic time series is rarely a collection of independent

data, as the series generally are over-sampled relative to the characteristic time scales of the

variability.

To illustrate the effect of autocorrelation over time, or serial correlation, consider the

sample mean

x =
1

n

n∑
i=1

xi. (75)

The variance of the sample mean is

σ2
x = E

(
(x− µ)2

)
= E

(
x2
)
− µ2

=
1

n2

n∑
i=1

n∑
j=1

E(x′ix
′
j)

(76)

where x′i = xi−µ. Previously we assumed that the observations were independent, in which

case eq.(76) simplifies to

σ2
x =

E(x′2)

n
=
σ2

n
. (77)

More generally for a stationary time series that is not independent, eq.(76) can be expressed

as

σ2
x =

1

n

n−1∑
k=1−n

(
1− |k|

n

)
γx(k) (78)

where

γx(k) = E
(
x′ix
′
i+k

)
(79)

is the autocovariance of x at lag k. Eq.(78) can be rewritten as

σ2
x =

σ2

n∗
, (80)

where n∗ is the effective number of degrees of freedom for the sample mean,

n∗ = n

[
n−1∑

k=1−n

(
1− |k|

n

)
ρx(k)

]−1
, (81)
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and

ρx(k) =
γx(k)

γx(0)
(82)

is the autocorrelation function. Serial correlation in x reduces the number of degrees of

freedom (eq. 81) and increases the standard deviation of the sample mean. Note that

eq.(81) is the effective number of degrees of freedom specific to the sample mean. The

impact of serial correlation for different estimators will lead to different expressions for n∗.

Another measure of the number of independent points in a single time series, x, is based

on the integral time scale, T , defined as

T =
m∑
k=1

(ρx(k − 1) + ρx(k))
∆τ

2
, (83)

where m is the maximum lag considered, ∆τ is the incremental lag of the autocorrelation

function, which typically equals ∆t the sample period of x. T provides a measure of the

decorrelation time of x. The effective number of degrees of freedom based on the integral

time scale is

n∗ = n
∆t

T
. (84)

In practice, the calculation of the integral time scale is unsatisfactory if x contains en-

ergetic, long period components that tend to prevent eq.(83) from converging. In addition

at long lags, errors in the sample autocorrelation function can lead to biased, unreliable,

and inconsistent estimates of T . Emery and Thomson recommend evaluating eq.(83) over

a range of lags to evaluate the stability of the T estimate. Firing [1989] sets m to the first

zero crossing of the autocorrelation function.

An alternative to the integral time scale approach is obtained if the time series can be

modeled as an auto-regressive process (e.g., AR(1)):

xi = c+ φxi−1 + εi, (85)

where c and φ are constants and ε is a white noise process with zero mean and constant

variance, then

n∗ = n
1− ρ(1)

1 + ρ(1)
. (86)

We again emphasize that eq. (83) is defined for a single time series, and eq. (81) for the

sample mean. Each estimator will have its own effective degrees of freedom expression. For

example, for the sample covariance or sample correlation, �Davis (1977) gives the expression

n∗ =
n

n−1∑
k=1−n

[ρx(k)ρy(k) + ρxy(k)ρyx(k)]

, (87)
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where

ρxy(k) =
E
(
x′iy
′
i+k

)
γx(0)γy(9)

. (88)

Davis, R. E., 1977: Techniques for statistical analysis and prediction of geophysical fluid

systems. Geophys. Astrophys. Fluid Dynamics, 9, 245-277.

Firing, E., 1989: Mean zonal currents below 1500 m near the equator, 159 ◦W. J. Geophys,

Res., 94, C2, 2023-2028

15 Monte Carlo Simulations

Estimates based on a random sample are themselves random variables with their own prob-

ability distribution, or sampling distribution. So far we’ve considered statistical inferences

by relating the sampling distribution to a classical distribution. For example, we’ve related

the sampling distribution of the sample mean to the Normal and Student’s t-distributions,

the sample variance to the χ2 distribution, and variance ratios from a multiple linear re-

gression to the F distribution. This is the classical approach, but it has limitations when

the expression for the sampling distribution is not straight-forward to derive, and/or when

limiting assumptions are needed to obtain the expression, such as that the sample consists

of Normally-distributed and independent data.

An alternative approach for statistical inferences makes use of Monte Carlo simulations.

Instead of deriving the sampling distribution analytically, Monte Carlo simulations allow

for an empirical determination of the sampling distribution by creating a large number of

synthetic data samples each with simulated random noise. The synthetic samples are run

through the estimator under consideration, yielding a range of estimated values that reflect

the influence of noise on the desired signal. The simulated estimates define an estimate of the

underlying sampling distribution. The method has gained popularity as computing power

has increased, allowing rapid generation of random numbers and repeated computation of

the estimate.

The first step in a Monte Carlo simulation is to define the statistical test. This is a useful

exercise as classical error analyses tend to be black box with underlying assumptions hidden.

For example, we may wish to determine the standard deviation of an estimate, confidence

intervals, whether the estimate stands above the range of values expected from random noise,

etc.
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The main consideration is how to define the underlying noise or random component of

the samples. Common options include:

1) random numbers generated from a classical distribution or from a Markov chain;

2) drawing the samples from the original data set with replacement (i.e., the same datum

can be selected more than once), the ”signal” must be removed from the data to create an

estimate of the noise, random numbers are used to scramble the index of the series;

3) use of spectral representations with random amplitude and/or phase.

The first two methods are easiest to program; however, when dealing with data series,

care must be taken to account for serial correlation. The spectral method addresses serial

correlation directly through the specification of the underlying spectral form. Once the

method for simulating time series is specified, the estimate is repeated a large number of

times, thus generating a probability distribution of the estimate..

16 Empirical Orthogonal Functions

Empirical Orthogonal Function (EOF) analysis is used to decompose a two-dimensional

dataset, typically with dimensions of space and time, into orthogonal basis functions or

modes. Unlike a Fourier analysis and other decompositions in which the basis functions are

specified, the EOF basis functions are determined directly from the data, or empirically.

EOFs not only provide an orthogonal basis set, but the modes also are efficient in that the

first mode explains the dominant covarying pattern, the second mode the next dominant

pattern of the residual (mode 1 removed) that is orthogonal to the first mode, and so on.

EOFs often can compress a large dataset into a small subset of modes that account for much

of the overall variance.

Given a variable h(x, t) that is a specified at Nx space points and Nt time points, the

EOF analysis represents the data as a sum of the product of spatial and temporal functions,

h(x, t) =
N∑
k=1

ak(t)ek(x) (89)

where ek(x) is the spatial basis function for mode k, and ak(t) is the temporal expansion

function for mode k, and N = min(Nx, Nt). An orthogonality condition is imposed such
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that the spatial modes are orthonormal over x,∑
x

ej(x)ek(x) = δjk, (90)

and that the temporal expansion functions are uncorrelated over t,

< ajak >t= δjk < a2k >t, (91)

where < .. >t represents a time average. The ek’s are the eigenfunction solutions of

Ce = λe, (92)

where C is the covariance matrix of h(x, t) with elements

Cmn =< h′(xm, t)h
′(xn, t) >t, (93)

where the prime indicates departures from a mean, e.g., the temporal mean at each grid

point or the spatial mean at each time. The ek’s are the column vectors of e, and λ is a

diagonal matrix of eigenvalues, which represent the variance accounted for by each mode

λk =< a2k >t . (94)

The eigenfunctions are ordered such that λ1 > λ2 > .. > λN . The total variance of the

dataset is represented by the sum of the eigenvalues

∑
x

< h(x, t)2 >t=
N∑
k=1

λk. (95)

For each spatial mode we compute the corresponding temporal expansion function as,

ak(t) =
∑
x

h(x, t)ek(x). (96)

The above applies whenNt > Nx, in which case the spatial functions are orthonormal, and

the temporal expansions have the same physical unit as h(x, t). If Nx > Nt, the dimensions

can be switched such that h(x, t) is represented by a set of temporal basis functions with

associated spatial expansion functions,

h(x, t) =
N∑
k=1

ak(x)ek(t). (97)

The orthonormal temporal modes, ∑
t

ej(t)ek(t) = δjk, (98)
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are the eigenfunctions of C, computed using spatial averages,

Cij =< h′(x, ti)h
′(x, tj) >x, (99)

and the spatial expansion functions are obtained by projecting the temporal modes on to

the data,

ak(x) =
∑
t

h(x, t)ek(t). (100)

Whether Nt > Nx or Nx > Nt, the spatial and temporal functions described by the N =

min(Nt, Nx) modes are equivalent. It is more efficient computationally to form C so that it

has the smaller dimension.

There are a number of variations to the standard EOF analysis described above. For

example, the eigenfunctions can be obtained from the correlation matrix (normalizes all

data to equal variance), the cross-spectral matrix (complex eigenfunctions with amplitude

and phase information), the lagged-covariance matrix (not restricted to standing patterns),

etc. Since the EOFs form a basis set, they can be rotated to emphasize signals in sub-domains

of the data.

The EOFs also can be obtained directly from the dataset (i.e., you do not need to compute

C) using a Singular Value Decomposition (SVD). Given an invertible, real m x n matrix A

with m > n, then the singular value decomposition of A is

A = UDVT, (101)

where U is a m x m matrix, D is m x n, and V is n x n. U and V have orthogonal columns

so that

UTU = I (102)

and

VTV = I. (103)

So if A is our original data array h(x, t), then the columns of V are equivalent to the

eigenfunctions obtained from the covariance matrix, C, and the columns of UD are the

expansion functions for each mode. D is a diagonal matrix whose elements are the singular

values of A, which are related to the eigenvalues of the covariance matrix of A by dk = λ
1/2
k .

17 Fourier series

A Fourier series represents a periodic function in terms of cosine and sine basis functions.

Recall that cosines and sines form an orthogonal set of functions over the interval [−π, π],
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such that ∫ π

−π
sin(mt)sin(nt)dt = πδmn, (104)∫ π

−π
cos(mt)cos(nt)dt = πδmn, (105)∫ π

−π
sin(mt)cos(nt)dt = 0, (106)∫ π

−π
sin(mt)dt = 0, (107)∫ π

−π
cos(mt)dt = 0. (108)

Any periodic, piecewise continuous function over the interval can be represented by a Fourier

series given by

y(t) =
ao
2

+
∞∑
n=1

ancos (nt) + bnsin (nt) . (109)

A set of orthogonal cosines and sines can be obtained for any record length T by defining

a change of variables t = 2πt′/T , which after substituting into eq.(109) and dropping the

prime superscript yields

y(t) =
ao
2

+
∞∑
n=1

ancos (2πfnt) + bnsin (2πfnt) , (110)

where fn = n/T .

The coefficients of the Fourier series are given by

an =
2

T

∫ T/2

−T/2
y(t)cos (2πfnt) dt, k = 0, 1, 2, ... (111)

bn =
2

T

∫ T/2

−T/2
y(t)sin (2πfnt) dt, n = 1, 2, ... (112)

An equivalent representation to eq.(110) is the complex Fourier series expressed in terms

of complex exponential functions

y(t) =
∞∑

n=−∞

cnexp (i2πfnt) dt. (113)

The coefficient cn are given by

cn =
2

T

∫ T/2

−T/2
y(t)exp (−i2πfnt) dt, n = ...− 2,−1, 0, 1, 2, ... (114)

The complex coefficients cn can be expressed in terms of the real coefficients for the Fourier

series,
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18 Discrete Fourier transform

For a discrete series sampled at regular intervals (xo, x1, ..., xN−1), the discrete Fourier trans-

form is defined as

Xn =
N−1∑
k=0

xkexp(−i2πkn/N), n = 0, 1, .., N − 1. (115)

If x is a time series, the Fourier transform can be considered as a link between the time

(tk) and frequency (fn) domains. Eq.(115) also is referred to as the Forward transform. The

complex Xn represent both the amplitude (|Xn|/N) and phase (arctan(Xn)) of the sinusoidal

component of x at frequency fn = n/N cycles per sample.

The inverse Fourier transform is defined as

xk =
1

N

N−1∑
n=0

Xnexp(i2πkn/N), k = 0, 1, ..., N − 1. (116)

The normalizations in eq.(115) and eq.(116) differ from the Fourier series described above;

however, the normalizations are arbitrary as long as the forward and inverse transforms

have opposite sign and the product of their coefficients equals 1/N . The normalizations in

eq.(115) and eq.(116), as well as the convention of indexing t from 0 to N − 1, are used

commonly in the Fast Fourier Transform (FFT), the standard algorithm for computing the

discrete Fourier transform.

An important property of the Fourier transform is that both Xn and xk are N-periodic,

that is Xn+N = Xn and xk+N = xk. It also follows that fN−k = −fk, thus the frequencies

in the range fN/2 < fn < fN correspond to the negative frequencies in the complex Fourier

series. The frequency fN/2 = 1/2 (i.e., half the sample frequency) is the Nyquist or cut-

off frequency, which is the highest absolute frequency that is unambiguously resolved by the

Fourier transform of a discrete time series. Contributions from frequencies above the Nyquist

are aliased in the resolved frequency range according to the N-periodic condition.

The Fourier transform applies to both real and complex series (i.e., scalars and vectors).

If x is real, then XN−n = X∗n where the star indicates complex conjugation.

Parseval’s theorem states that

N−1∑
k=0

|xk|2 =
1

N

N−1∑
n=0

|Xn|2. (117)

Thus the variance of x is represented by the sum of the squared Fourier amplitudes.
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The convolution theorem states that a convolution in the time domain corresponds to a

product in the frequency domain and vice versa. In other words

F [x ∗ y] = X · Y, (118)

where F represents a Fourier transform, and ∗ a convolution. We’ve used the convolution

theorem already in computing the autocorrelation function, and it is an important concept

for understanding spectra and digital filtering.

19 Autospectrum estimation

The autospectrum describes how the variance of a series (xk, k = 0, 1, .., N−1) is distributed

over frequency. A basic version of the autospectrum is the periodogram, which plots the

squared Fourier amplitude, |X|2/N2, versus f . An issue with the periodogram in this form

is that the amplitude of X varies with record length, T = N∆t, or frequency bandwidth,

∆f = 1/T , which makes it cumbersome to compare periodograms from time series with

different lengths.

An alternative to the periodogram is the spectral density, or spectral amplitude per

frequency bandwidth,

S̃(f) =
|X(f)|2

N2

1

∆f
=
|X|2∆t
N

, (119)

which avoids the problem of record length dependent amplitudes. S̃ turns out to be a poor

estimate of the autospectrum, however, because it has a large mean square error (MSE). For

example, if x is assumed to be Normally distributed, then the autospectral estimate can be

related to a chi-square random variable with just 2 degrees of freedom (sine and cosine). At

2 degrees of freedom, the MSE of S̃ is on the order of the estimate S̃ itself. This is the case

regardless of record length, i.e., increasing T does not decrease the MSE, which makes S̃ an

inconsistent estimate of the autospectrum.

A better estimate for the autospectrum is achieved by increasing the number of degrees

of freedom using some form of averaging,

Ŝ(f) =
1

m

m∑
i=1

S̃i. (120)

There are two common averaging methods:

1) Segment averaging
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Divide the time series into m equal length segments, compute S̃ for each segment, and

average these together to form Ŝ. By averaging m segments, the number of degrees of

freedom increases from ν = 2 to 2m, assuming that each segment is independent and the

time series is stochastic. If windows are applied to each segment to suppress spectral leakage,

then overlapping segments are recommended (Welchś method), generally at 50% overlap.

2) Band averaging

Compute S̃ based on the entire record and smooth in the frequency domain, typically by

computing a running average of m adjacent frequencies. Block averaging over m adjacent

frequencies nominally increases ν to 2m, assuming that the underlying spectrum is white

(i.e., approximately equal spectral amplitudes for all frequencies).

After using segment averaging, band averaging, or both, we can construct confidence

limits for the autospectrum in the usual way:

Pr

[
χ2
α/2 <

νŜ(f)

S(f)
< χ2

1−α/2

]
= 1− α. (121)

Note that statistical reliability is improved at the expense of frequency resolution.

For real time series, X(f) = X(−f)∗, in which case only positive f need be considered

and the one-sided auto spectrum is used. This is obtained by doubling Ŝ(f) for all positive

frequencies, except the mean and Nyquist.

20 Rotary spectra

Rotary spectra provide information on the distribution of energy versus frequency for a

vector time series. Consider the current time series w(t) = u(t) + iv(t), where u and v are

east-west and north-south current components. The auto-spectrum of w is

Ŝ(f) =
1

m

m∑
i=1

|W (f)|2∆t
N

(122)

The positive frequencies correspond to motions that rotate in the anti-clockwise direction

with respect to time, and the negative frequencies in the clockwise direction.

For each frequency, we can think of the corresponding current component as a vector

that traces an ellipse in time. The major and minor semi-axes of the ellipse are given by

LM = A(f) + A(−f) and Lm = |A(f)− A(−f)|, respectively, where A(±f) = |W (±f)|/N .

The ellipse major axis is oriented at an angle relative to the u axis given by θ(f) = 1/2(ε(f)+

ε(−f)), where ε(±f) = arctan(W (±f)))..
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21 Filters

Frequency domain

Digital filters are used to suppress unwanted fluctuations in a time series, x(t), from

particular frequency bands. In the frequency domain, this is accomplished by computing

X(f), the Fourier transform of x(t), multiplying by a transfer function H(f) (also called

the frequency response function or admittance function), and computing the inverse Fourier

transform to obtain the filtered time series,

x̃(t) = F−1 [X(f)H(f)] . (123)

The frequencies that are included are in the pass bands (|H(f)| = 1) and those that are

suppressed are in the stop bands (|H(f)| = 0 ). A low-pass filter passes energy at frequencies

lower than a given cut-off frequency, and suppresses energy at higher frequencies. The

opposite is true for a high-pass filter, usually computed as the original time series minus

the low-pass filtered series. Band-pass filters can also be designed to emphasize a range of

frequencies.

Filter functions with sharp transitions between pass and stop bands will result in ringing

in the time domain. Recall that a product in the frequency domain corresponds to a con-

volution in the time domain, so that the filtered time series equals the convolution of x(t)

and h(t), the inverse transform of H(f). Rectangular-shaped filters in the frequency domain

will result in sinc-shaped inverse transforms in the time domain with large side lobes. This

results in the Gibbs phenomenon, which yields ringing in the filtered time series near sharp

transitions or discontinuities, including the ends of the record. To minimize the ringing ef-

fect associated with ideal filters, a tapering function can be applied that creates a smooth

transition in H(f) from the pass band to the stop band. A cosine or cosine squared shaped

taper is commonly used.

Time domain

Applying a digital filter in the time domain involves a convolution of the time series,

x(t), with a filter function, h(t). The filter function should be normalized so that sum(h)=1.

A convolution in the time domain corresponds to a product in the frequency domain,

X(f)H(f), where the transfer function H(f) is the Fourier transform of h(t). The spec-

tral behavior of a time domain filter can be evaluated using H(f).
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The ends of time series require attention when applying convolution filters. If the filter

function has length = 2m+1, then typically m points are truncated at the start and end of

the filtered time series. Other options include zero padding both ends of x(t) by m points

before filtering, specifying a mirror image of m points about the first and last point of the

time series, treating the series as cyclically periodic, or adjusting the filter weights using

some optimization criterion. The same concerns apply to gaps in the time series. In the case

of small gaps, one option is to interpolate through the gap prior to applying the filter.

An example of a Gaussian-shaped time domain filter is the Blackman window, defined

by

h(k) = 0.42− 0.5cos

(
2πk

N − 1

)
+ 0.08cos

(
4πk

N − 1

)
, (124)

where N is the length of the window.

22 Complex demodulation

A complex demodulation is used to specify the amplitude and phase of a finite bandwidth

periodic signal. Recall that constructive and destructive interferences of the frequency com-

ponents within the finite band cause the temporal modulation of the dominant periodic

signal within the band. Let’s consider a time series x(t) with an energy peak near fo. We

can demodulate the signal near the fo peak by first multiplying by the complex exponential

xo(t) = x(t)exp(−i2πfot). (125)

This is equivalent to shifting the energy at frequency f to f−fo, so that energy at fo appears

at zero frequency (i.e., shifts band of interest to the baseband), the mean component to −fo,
etc. To isolate the energy at the peak of interest, now near f = 0, apply a low-pass filter

to xo(t) with a suitable cut-off frequency to remove signals outside the frequency band of

interest. The low-pass filtered time series, xf (t) , is complex, and so an amplitude and phase

of the modulated signal can be obtained by

A(t) = 2|xf (t)|, (126)

φ(t) = arctan(xf )). (127)

23 Cross-Spectrum

The cross-spectrum measures the co-variability of two time series as a function of frequency.

It is the frequency domain analog of the covariance function in the time domain. The
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cross-spectrum, Sxy(f), between time series x(t) and y(t) can be obtained from the Fourier

transform of the cross-covariance function (Cxy(τ)), just as the autospectrum can be com-

puted from the auto-covariance function. More commonly, the cross-spectrum is obtained

directly from the Fourier transforms of x(t) and y(t),

Ŝxy(f) = X∗(f)Y (f)
∆t

N
(128)

where the overbar signifies segment and/or band averaging.

Unlike the autospectrum, Sxy(f) is complex,

Sxy(f) = Lxy(f)− iQxy(f), (129)

where Lxy(f) is the co-spectrum, which measures in phase variability between x(t) and y(t)

at frequency f , and Qxy is the quadrature spectrum, which measures variability that is in

quadrature or 90◦ out of phase.

The cross-spectrum typically is presented in polar form,

Sxy(f) = Axy(f)exp (iφxy(f)) , (130)

where

Axy(f) = |Sxy(f)| = (L2
xy +Q2

xy)
1/2 (131)

is the cross-amplitude, and

φxy(f) = atan2 (−Qxy(f), Lxy(f)) (132)

is the phase.

The coherence is the frequency domain analog of the correlation in the time domain,

γxy(f) =
Axy(f)

(Sxx(f)Syy(f))1/2
. (133)

γxy(f) = 0 indicates no relationship between x(t) and y(t) in the frequency band of interest,

γxy(f) = 1 indicates a perfect correspondence. Axy(f) is the frequency domain analog of

the regression coefficient in the time domain. φxy(f) provides information on phase shifts,

or time lags, which in the time domain is comparable to the information provided by lagged

cross-correlations.

As with correlations, uncertainties for coherence estimates typically are assessed by test-

ing the null hypothesis that the true coherence is zero. The null hypothesis is rejected if
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coherence-squared estimates exceed the (1 − α)100% significance level, which is given in

Emery and Thomson (2004) as

γ21−α = 1− α[2/(ν−2)]. (134)

Hannah (1970) gives confidence intervals for phase as

|sin
[
φ̂(f)− φ(f)

]
| ≤

[
1− γ̂2

(2ν − 2)γ̂2

]
t2ν−2(α), (135)

where t is the Student’s t distribution. The uncertainty of phase estimates decrease as

coherence levels and degrees of freedom increase.
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