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Linear Regression

Motivation

One of the most common techniques for data anal-
ysis in a broad range of disciplines is linear regres-
sion. It’s easy. It looks simple but scientific. It’s
ubiquitous. But what does it mean in any partic-
ular application? What can be inferred from it?

Bare bones

Suppose you have two matching sequences of num-
bers; they might be measurements of two quanti-
ties in the same location at different times, for ex-
ample, but the possibilities are endless. Stripping
everything down to the fundamental technique, we
are just starting with the two sequences, Xi and
Yi, where i ranges from 1 to n, or from 0 to n− 1.

In the following we will keep the notation as
minimal as possible by omitting the limits from
summations—they should be obvious from the
context—and by using Einstein’s summation con-
vention whenever possible to avoid even the sum-
mation symbol (

∑
). In this convention, the ap-

pearance of a repeated index in a product implies
summation over all values of that index, so

∑
XiXi

is abbreviated as simply XiXi.

Now we want to find a straight line that fits the
scatter plot. But what is the criterion for a good
fit? We will use the sum of the squares of the
deviations of the Y variable from the line. This
is standard linear least squares. Notice that it is
breaking the initial symmetry–it is treating the X
and Y dimensions differently.

Here we will take a shortcut to make the notation
simpler. Define the mean of a variable via

X̄ =
1

n

∑
Xi (1)

and use lower case for a sequence with its mean
subtracted out:

xi = Xi − X̄. (2)

The straight line will be

ŷi = a+ bxi. (3)

We need to find the values of a and b that minimize
the sum of squared deviations of yi from ŷi; we can
call this the cost function, C:

C(a, b) =
∑

(yi − a− bxi)2 (4)

=
∑

[y2i + a2 + (xib)
2 (5)

+ 2(−yia− yixib+ axib)].

(The equation above is using an explicit summa-
tion everywhere because some of the terms do not
involve repeated indices.)

To minimize C we set its partial derivatives to zero:

∂C

∂a
= 2

∑
(a− yi + xib) = 0 (6)

The solution is a = 0 because
∑
yi = nȳi = 0 and

similarly for the last term. The solution for b is
more interesting:

∂C

∂b
= 2

∑
(x2i b− yixi − axi) = 0. (7)

The last term is zero because x is zero-mean, leav-
ing (dropping the summation sign and using the
Einstein convention)

b =
yixi
xixi

. (8)

Now that we have found the best fit in the least-
squares sense based on this choice of cost function,
what does it mean? Under what circumstances can
we infer something more interesting from it?

Suppose X and Y result from an experiment or ob-
servational campaign that can be repeated many
times; or from a single campaign that can be ex-
tended effectively to infinite length. Further, sup-
pose that when the experiment is repeated or the
time series lengthened, there is a particular com-
bination of regularity and randomness such that

yi = βxi + εi, (9)

where β is constant, and ε is a zero-mean zero-
mean residual, possibly but not necessarily ran-
dom. We don’t need to specify any more about it
at this point. Notice that we are talking about reg-
ularity and randomness, but not about causality or
dynamics of any kind.

Under these conditions, let’s see whether b from
(8) is an unbiased estimator of β. The question
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is whether E[b] = β. To get the expected value,
we will take the limit as the number of points in-
creases; this could be viewed as extending a time
series, or stacking a set of experiments. First, we
need to substitute (9) in (8):

b =
βxixi + εixi

xixi
(10)

= β +
εixi
xixi

(11)

Then the bias,

E[β − b] = lim
n→∞

εixi
xixi

(12)

= 0 iff εixi → 0. (13)

Therefore b is an unbiased estimator if ε and x are
uncorrelated. Of course for any finite n, the sample
correlation of ε with x will not be zero, so b could
be higher or lower than β—or even of a different
sign.

Suppose the condition for zero bias is met. Then
if we calculate a b from our x and y data set, and
subsequently have another sample of x from a pro-
cess or system that we believe is identical, we can
use it in (3) to predict the corresponding value of
y, knowing that the prediction will not be perfect;
b is not exactly β, and we have no way of knowing
the corresponding ε. Under the stated conditions,
however, the prediction will be the best bet we
can make with no additional information, under
the assumption that (9) is a good description of
the statistical relationship.

Reversing roles

What happens if we fit a line the other way around
by swapping the roles of X and Y ? We might
expect to get the reciprocal of b, but in general we
don’t. For

x̂i = c+ dyi. (14)

we still get c = 0, but

d =
yixi
yiyi

. (15)

With the squared correlation coefficient

r2 =
(yixi)

2

(yiyi)(xixi)
, (16)

we find

b = r2
1

d
. (17)

Only if x and y are perfectly correlated or anti-
correlated will b and d be reciprocals of each other.
Otherwise, the slope calculated by minimizing the
squared deviations of y will always be smaller than
the slope calculated by minimizing the squared de-
viations of x.

This is easy to understand if you think about an
extreme case: suppose there is no correlation be-
tween x and y. Then the scatter plot will be just
an elliptical cloud with its major axis on one of the
axes; and if you scale x and y by their standard de-
viations, the ellipse will collapse to a circle. Then
you simply cannot do better in predicting y based
on x than to say “zero”; the straight line fit will
be a horizontal line through the origin. But if you
are asked to predict x based on y, you still can’t
do better than to say “y is most likely to be closer
to zero than to anything else, regardless of x”, so
the straight line fit will be a vertical line.

An application: lack of fit

Perhaps you have a time series of temperature mea-
surements, and you want to know whether they are
trending up, so you assign your de-meaned tem-
perature series to y and your de-meaned time vari-
able to x. Then you calculate b using (8). Simple.
What could go wrong?

Suppose your record is 2.5 years long. What do
you think the residuals from your fit will look like?
How might b change if the start and end of your
record were shifted by 3 months?

The problem here is lack of fit ; there is much more
going on than just a trend—there is a prominent
annual cycle, which, over the 2.5 year period of
data, is correlated with time. In other words, your
ε in (9) is very badly behaved. It actually dom-
inates over the linear term, and to make matters
worse, εixi is large. Any inference you make about
the real long-term trend will almost certainly be
in error, and it will certainly be unjustified. Of
course, the problem is greatly exacerbated by the
shortness of the time series.

In this case the lack of fit part of the problem can
be addressed by using multiple linear regression,
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which just means extending the model to include
an annual cycle. In the simplest case one includes
just the annual harmonic, and the model looks like
this:

yi = a+ bti + c cos(2πti/T ) + s sin(2πti/T ) + εi,
(18)

where T is one year. The same optimization proce-
dure that was used to estimate b is used for c and s.
Notice that because the cosine and sine parts are
not zero-mean in general, a will not be zero. Mul-
tiple least squares problems like this have a neat
linear algebra solution which we will not demon-
strate here. The analytic solution is not good for
computation, however; instead, use functions that
are designed for this purpose.

Main points so far

• Regression is about predictions on the basis of
statistical relationships, not about dynamics
or causality.

• Linear regression fits are not symmetric with
respect to the dependent variable (Y ) and the
independent variable (X). This is an inherent
property, not a defect.

• Linear regression provides coefficients for an
assumed model; it is up to you choose a model
that fits well.

• If the model doesn’t fit well, then ε and x may
be correlated, in which case the linear regres-
sion estimate of β , b, will be a biased estima-
tor.

• Even with a good model, no amount of statis-
tical magic can conjure up information that is
not present in the data set being analyzed.

Noise in X: a minor diversion

Returning to the single line fit, what happens if
our X values are noisy?

Again we will go straight to the de-meaned vari-
ables and try to keep everything as simple as possi-
ble. Define xi as the “true” value, and x′i = xi + δi
as the measured value. Then the model (9) be-
comes, in terms of x′,

yi = βx′i + εi − βδi. (19)

Our least-squares fit regression coefficient looks the
same as before, but with x′ substituted for x:

b′ =
yix

′
i

x′ix
′
i

. (20)

The analog of (10) is

b′ =

∑
(βxi + εi)(xi + δi)∑

(xi + δi)2
(21)

=
βxixi + bxiδi + εixi + εiδi

xixi + 2xiδi + δiδi
. (22)

If x, ε, and δ are all mutually uncorrelated, then
upon taking the expected value this collapses down
to

E[b′] = E

[
βxixi

xixi + δiδi

]
(23)

=
β

1 + λ
, (24)

λ =
E[δiδi]

E[xixi]
. (25)

In this case the noise in x′ biases b′ lower in abso-
lute value.

There is another possibility, though, which is that
the errors in x, δ, are uncorrelated with x′ and
therefore correlated with x. This is a subtle dis-
tinction, but it leads to the result that b′ becomes
an unbiased estimator of β provided ε is still un-
correlated with x:

b′ =
βx′ix

′
i + εix

′
i − βδix′i

x′ix
′
i

(26)

= β +
εix

′
i

x′ix
′
i

− βδix
′
i

x′ix
′
i

, (27)

leaving only β after taking the expectation.

I labeled this “a minor diversion” because I think
that in most cases the question of whether mea-
surement errors are correlated with the measured
values, or with the “true” values is of minor impor-
tance compared to the problems in the formulation
of a model and in the adequacy of the sampling.
Notice also that even in the case where b′ is a biased
estimator of β, it is providing the best coefficient to
use for predicting any additional values of y based
on new values of x′, given the chosen model.


