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Abstract--A technique for the objective analysis of oceanic data has been developed and used 
on simulated data. The technique is based on a standard statistical result--the Gauss-Markov 
Theorem--which gives an expression for the least square error linear estimate of some physical variable 
(velocity, stream function, temperature, etc.) given measurements at a limited number of data points, 
the statistics of the field being estimated in the form of space-time spectra, and the measurement 
errors. An expression for the r.m.s, error expected in this estimate is also derived and illustrated in 
the form of 'error maps'. 

Efficient sampling arrays can be designed through trial-and-error adjustment of array configura- 
tions until a suitable balance of mapping coverage and accuracy, as measured by the error maps, is 
achieved. Examples of the mapping ability of some simple arrays are given. 

Using statistics inferred from the preliminary Mid Ocean Dynamics Experiments various realiza- 
tions of likely flow fields were simulated. The 16 element MODE-I array was tested by comparison 
of the simulated fields and the objective maps based on inferred 'measurements' at the array points. 
The reliability of statistics inferred from observations was estimated by comparing correlations 
derived from limited observations of the simulated fields with the known statistics. Correlations 
derived from two realizations differed significantly but most calculations reproduced the known 
statistics moderately well. 

An intercomparison of Eulerian measurements (current meters) and Lagrangian measurements 
(neutrally buoyant drifters) was also carried out using the objective interpolation method. 

1. INTRODUCTION 
IN RECENT years there has been an increasing effort 
to determine the spatial structure of  time-depen- 
dent velocity and density fields in the deep ocean. 
In addition to the ongoing programme of  tracking 
meanders in the Gulf  Stream, extensive networks 
of hydrographic stations have been analysed by a 
number of workers. For  example, SAUNDERS (1972) 
investigated the hydrography in a 5 ° square 
in the Mediterranean, and ELLIOTT, HOWE and 
TAIT (1974) analysed stations in the northwest 
Atlantic. During the POLYGON experiment 
(BREKHOVSKIKH, FEDOROV, FOMIN, KOSHLYAKOV 
and YAMPOLSKY, 1971), scientists from the Soviet 
Union deployed a large array of  current meters in 
the subtropical Atlantic near 18°N 55°W. A total 
of 17 moorings spaced along a cross with arms 
210 km long with current meters at various levels 

in the upper 1500 m was maintained continuously 
for 7 months, during which period at least one 
major dosed eddy was observed to move west- 
wards through the area. 

The Mid Ocean Dynamics Experiment 
(MODE) was a combined programme of observa- 
tion and theory involving scientists from many 
different institutions in the U.S.A. and Great 
Britain. The objective is an intensive study of the 
mesoscale motion on space scales of  50 to 500 km 
and time scales of  1 week to a few months. 
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MODE-I involved deployment of more than 100 
current meters on 23 moorings within a circle of 
radius 200 km centred on 28°N 69°40'W in the 
Sargasso Sea for a period of about 100 days. A 
hydrographic programme comprising some 700 
CTD and STD soundings was carried out at the 
same time together with the tracking of 18 long- 
range SOFAR floats and some 30 short-range 
floats. Airdrop probes measuring the vertical 
average of the horizontal currents, moored 
temperature sensors, bottom-mounted pressure 
gauges, inverted echo sounders, and electro- 
magnetic current meters were also involved, as 
well as free-fall instruments measuring detailed 
current profiles. 

Measurement programmes of this magnitude 
require substantial resources and it is desirable to 
consider carefully the design of the instrument 
arrays and the procedure for data analysis. The 
study reported here arose as part of the planning 
process for MODE-l,  but it is believed to be of 
sufficient general interest to warrant separate 
description. The conclusions provided some of the 
criteria according to which the main field 
programme was designed. The latter will not be 
discussed here in detail. The emphasis is rather on 
a theoretical exercise in techniques of data analysis 
and array design. The choice of examples is 
coloured by the programme requirements but the 
principles are of wider application. 

The original problem addressed was how to 
interpolate horizontally between data points from 
an irregular two-dimensional array of some 16 
current meters spaced 20 to 100 km apart, in order 
to construct a synoptic map of the velocity field. 
Given also the desire to ascertain the overall 
pattern of the flow over a wide area, and the 
logistic difficulties of deploying additional meters, 
the array spacing has to be as large as possible 
consistent with reasonable accuracy in the inter- 
polation and some redundancy to cover instru- 
ment failure. These conflicting requirements imply 
that the data available must be expected to be 
barely adequate for the task at hand, and consider- 
able effort is justified to maximize the information 
obtained from it. 

The primary interest is in the low-frequency 

currents--operationally defined as the output of a 
Gaussian filter applied to the time series of 
velocity components [u(t), v(t)] at fixed points, 
yielding a 3-day running average velocity which is 
then resampled daily. This pre-processing greatly 
reduces the inertial oscillations and internal waves 
in the record and increases the horizontal scale 
over which the velocities are correlated. A possible 
analysis procedure would be to draw, by hand, 
contour maps for each component u(x, y), v(x, y) 
separately at any given time t, smoothing to 
whatever degree appeared appropriate to the 
internal consistency of the data. However, 
theoretical considerations strongly suggest that 
the low-frequency currents should be in approxi- 
mate geostrophic balance, and horizontally non- 
divergent to an accuracy of a few per cent, i.e. 
there exists a stream function +(x, y, t) such that 

u = - -  , l . . . . . . . .  ( 1 )  

~y ~x 

It would be very desirable to measure the 
divergence 8u/Bx + 8v/Sy and compare it to the 
magnitude of the vorticity 8v/Sx -- Bu/Sy, but 
unless the theoretical expectations are grossly in 
error, observational errors were clearly too large 
for a decisive test. Accordingly, unless there is a 
clear discrepancy, it seems preferable to raise 
equation (1) to the level of an axiom of the analysis, 
and to estimate one scalar field d?(x, y) from 32 
pieces of information, rather than attempting to 
patch together two somewhat inconsistent esti- 
mates for u, v, each obtained separately from only 
16 pieces of information. 

A few preliminary trials showed clearly the 
advantage of using a computer to aid in this task. 
A human analyst finds it difficult to take 
cognizance simultaneously of both the direction 
and the magnitude of the gradient of +, and a 
more objective technique is desirable. There is, of  
course, no unique way of interpolating between a 
limited number of data points, and every analysis 
implies assumptions about the character or degree 
of smoothness of the field being analysed. 

The method suggested here has the advantage 
that it is based upon certain explicitly stated (and 
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testable) statistical assumptions. Granted these 
assumptions, it yields at every point (x, y) an 
estimate t~ which is optimal, in the sense that of all 
estimates, which depend linearly on the data 
supplied, on the average this one has the least 
error. Furthermore, this minimum mean square 
error can be calculated a priori for different array 
designs, and the latter may be adjusted so that the 
expected interpolation errors do not exceed 
required tolerances. At the same time, estimates 
for the velocity components (-- 8~/Oy, O~/Ox) are 
also optimized in the same sense, and are auto- 
matically nondivergent. 

The second problem given detailed considera- 
tion concerns space-time interpolation of the 
depths of a given isotherm, measured non- 
synoptically from a ship criss-crossing the area in 
an irregular manner. This is a scalar field from a 
scalar measurement, unrestricted by considera- 
tions of nondivergence, yet complicated by the 
time dependence of the pattern being mapped. 
Reliable updated extrapolations of such fields 
can be of value operationally during a cruise when 
investigating special features of a flow pattern or 
when deciding where to make supplementary 
measurements, provided they are available in 
time and the probable error bounds are known. 
A modification of the same method was used on a 
trial basis during the MODE-I field programme. 

The approach is based on the Gauss-Markov 
theorem--a standard result in statistical estima- 
tion theory (LIEBELT, 1967). It has been applied in 
a manner similar to that described here by 
meteorologists in the Soviet Union (GANoXN, 1965) 
for the objective analysis of pressure and wind 
fields in the atmosphere, and is routinely used in 
the preparation of numerical weather prediction. 
In the oceanic context it should still be considered 
experimental--a supplement rather than a re- 
placement of careful hand analysis which, using 
the experience of  the analyst, probes all of the 
aspects of  the data. 

The approach was used to design sampling 
arrays for MODE-I. This is possible because the 
method is based on minimization of the expected 
interpolation error and results in a map of  this 
error which depends on the statistics of  the field 

and not the measurements themselves. Through 
trial-and-error adjustments of array configura- 
tions it is possible to seek out an array which 
strikes an appropriate balance between coverage 
and accuracy. An essential aspect of this design 
procedure is a precise definition of the quantity 
to be mapped. It is obvious that the array design 
depends on the scale of the phenomena one is 
hoping to measure. Examples of the ability of 
simple arrays to map various quantities were 
estimated from the associated error maps. 

A primary objective of this study was to test 
the above analysis procedures and the MODE-I 
array design on simulated data for which the 
precise statistics are known. These statistics were 
chosen to be consistent with preliminary observa- 
tions in the MODE area (Arrays I and III) in the 
manner described in Section 4. A number of 
realizations of randomly generated Gaussian 
fields with the appropriate space-time spectra 
were used to construct time series of velocity 
vectors at the projected locations, random noise 
was added to simulate instrumental and sampling 
errors, and the resulting 'data' were fed to the 
analysis routines. The reconstructed stream 
function was then compared with the original 
from which the velocities were derived. 'Float 
tracks' obtained by integrating the Lagrangian 
equations 

dx dv 
- -  u(x,  y ,  t ) ;  - "  : v(x,  y ,  t) 

dt dt 

x = x o ,  y = y o a t t  = 0 ,  
(2) 

using both the original and objectively interpolated 
velocity fields (u, v), were compared. While the 
potential performance of a particular array can be 
evaluated using maps of the r.m.s, error it may 
also be useful to compare directly the simulated 
and reconstructed fields. 

An important element of the method is that 
good estimates of the statistics of the field must 
be known. Variations between estimated space- 
time correlations obtained from limited sampling 
of the simulated fields provided a reminder of the 
dangers of drawing statistical inferences from too 
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little data. Improved methods of estimating the 
basic statistics will be discussed elsewhere, but no 
refinement of analysis will eliminate the need for 
caution tempered by judgement in the application 
of these methods to the designs of  major pro- 
grammes. 

One final point of  interest concerns the use of  
objective maps to test dynamical hypotheses. It is 
interesting to learn that, for the special case of  
linear dynamics, the verification of models can be 
carried out equally well through comparison of 
objective maps of the data and model 'hindcasts' 
or through comparison of statistics estimated from 
data and model simulations. 

2. B A S I C  T H E O R Y  

2.1 Simple scalar fieM 
For simplicity we present first the objective 

analysis procedure for a rather special case--  
estimating the value 0 x of a scalar variable 
0(x, y) at a general point x = (x, y) from measure- 
ments % at a limited number of data points x ,  
(r = 1 . . . . .  N). The central assumption is that the 
field 0 is one realization out of  a homogeneous 
statistical ensemble of  zero mean and known 
covariance function 

m 

0 x = 0 (3) 

0 x 0 x +~ --F(~) = f JTO¢) e i ' '  CdK, (4) 

where f ' (~ )  is the wave number spectrum. The 
requirement that the mean be zero is not critical 
as will be shown later. In practice the two point 
covariance function and the mean are estimated 
f rom a finite sample of  realization of 0 combined 
with some a priori prejudices. We will return later 
to how this may be done. We suppose also that a 
measured value q~r is the true point value plus 
some random noise (which may be local sampling 
error or instrumental uncertainty) 

~, = 0(x,)  + ~,, ( r  = 1 . . . . .  N) ,  (5) 

where the errors Sr are uncorrelated with one 

another and with the field 0 but have known 
variance, E: 

Crq~s ~-= 0 

Sres = ESrs (r, s = 1 . . . . .  N). (6) 

Systematic or calibration errors are thus not 
permitted here. 

Then the Gauss-Markov theorem states that 
the least squares optimum linear estimator for 
0(x, y)  is 

N ( ~  ) ,  (7) 
Ox-X cx, AriSes 

r = l  \ s = l  

where 

Ars == ~r~s--- F(Xr --  Xs) + ES,s, (8) 

is the matrix of  covariance between all pairs of 
observations, and A -1 is the inverse matrix of  A. 

Cxr = 0x% = F(x - -  Xr) (9) 

is the covariance between the quantity 0 x to be 
estimated and the rth measurement. For given 
positions of  the observation points, the matrices 
A T~ 1, Cxr are constants. Thus for different 
realizations of  the field 0(x), the estimate 0 x 
depends linearly on the observations ~0s. Hence 0 x 
is a linear estimator. 

Confidence levels in this estimate are also 
available. The variance of the error in 0x is 

N 

(Ox - -  0,,)~ = Cx ~ - x Cxr Cx, A 2 -  (10) 
r , s = l  

Equations (7) and (10) will be derived later in this 
section. The first term in (10) is the natural varia- 
tion in 0 in the absence of any data. The second 
term measures the information provided by the 
data. An important tool in the evaluation of a 
particular array design is the construction of maps 
of probable errors in the estimates to be made. 
Equation (10) shows that such a calculation re- 
quires only the location of the data points and a 
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knowledge of the covariance function F(~) and 
noise level E. Individual sets of data are not 
needed. Some elegant matrix algebra also provided 
formulae for the decreased error associated with 
inserting extra data points, but for this the reader 
should consult LmBELX (1967) and GANDIN (1965). 
Roughly speaking, if the variance given by 
equation (10) at a given point is already small, the 
insertion of an extra measurement there will not 
improve the overall analysis very much. 

Given the spectrum jS" (~) and the noise level E 
the procedure is quite straightforward for 
computing an optimal map 0, from a limited 
number of synoptic data points. The matrix A is 
positive definite and may readily be inverted and 
stored. For each set of observations {%} the weights 

N 

~ , = x  Ag ~% (I I) 
$=I 

follow immediately. For each map point x and 
observation r the correlation C~, is found by 
interpolation in a precomputed table from a 
functional representation of F(~), and the estimate 
is formed by summation of 

O. ----- Z C., rl,. (12) 

When the number of data becomes too large the 
inversion of the full A matrix is impractical and it 
becomes necessary to map 0 over segments of x 
using subsets of the data which are most pertinent. 
This involves a difficult sorting process based on 
the eovariance Cx, and is to be avoided if possible. 

To derive equation (7), we consider a quite 
general linear estimator 

N 

O. = Y~ ~., q~s, (13) 
s = l  

where the coefficients ~.sare still to be determined. 
Considering a large number of different realiza- 
tions of the field O(x, y) and observations %, the 
error variance for 0 is 

N 

( o x  - 0x)  ' = ( o ~  - z ~ , , r s )  , 
8=1 

8 r, 8 

(14) 
= Z (~,,, - -  Z C,,,. A? , ' )  (~.~ - -  Z C,,~, A~7~)A,~ 

F, $ V* 8" 

+ c , , , ,  - z C, , ,C, ,~AT~' .  
r , s ~ l  

The values of the coefficients t~xr which minimize 
this variance are precisely those used in equation 
(7), and the minimum which remains is given by 
expression (10). The positions of the observations 
x, and the analysis point x are, of course, held 
constant with this process. Given the statistics of 
the field being measured and the noise levels 
involved, no other analysis procedure could 
perform better. This is the Gauss-Markov 
theorem, a very simple and powerful result. 

The remainder of Section 2 is concerned with 
various details involved in adapting the central 
algorithm to specific cases of interest. The 
discussion is oriented toward the use of synoptic 
data but if such data are not available, so that 
interpolation in both space and time is required, 
the formulation remains the same except that the 
position variable x must be interpreted as a 
pseudo-vector determining position in both space 
and time. The correlation F(~) is, in this case, a 
space-time covariance. This is the procedure used 
for the second problem described in the Introduc- 
tion. 

2.2 Gross errors 
In general, the optimal estimate at a data 

point does not precisely correspond to the 
measurement there. We have 

p ~ l  s ~ l  

=p~l ( Arp - ES,p)I,N=EIAff %} (15) 

= ~, -- Eq,. 
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The discrepancy --Eq,  is an estimate of the 
random error on this particular observation 
%, obtained by comparison with surrounding 
observations and the statistics for this data 
point. The standard deviation of this discrepancy 
is 

, ,. 1/2 E {  ~ Ars  l' ~112 E{n~} .... A g  ~ ~,qo~,, 
$~ $" J 

~ E { A r t r } l / 2  ( 1 6 )  

The ratio of the discrepancy, E q ,  and the standard 
deviation of this discrepancy is 

Xr = rl,./{A~} x!=, (17) 

G({) = 2[F(0) -- F(~)] (19) 

does not depend on H. The above theory may be 
modified to allow for this contingency by formally 
including the constant H, and rearranging the 
expressions so that they are finite in the limit 
H ~ m, and adopting that limit (see Appendix). 
The result is that an estimated mean 0 should be 
subtracted from each observation ~, at the outset, 
and added back to the estimate Ox at the end 

0~ = ~ + £ Cx, {Z A,7 ~ (% -- 0)}, (20) 

where 0 is calculated in such a way that the sum 
of the weights is exactly zero: 

and is a convenient indicator whether a particular 
observation % is grossly incorrect, e.g. because of 
an instrument malfunction or transcription error 
not included in the original tolerances. If  it exceeds 
about 3, there is a prima facie case for rejecting 
the observation from the analysis. Of course, this 
approach will work only if the frequency of gross 
errors is small, and if the statistical tolerances 
have indeed been accurately estimated. 

2.3 Estimated mean 
For some fields the spectrum ,[7 (K) is so red 

that the integral over K diverges near K = 0. In 
that case the covariance function F({) is not well 
determined, though the structure function 

G ( g )  - -  ( 0 ~ + ~  - -  0~)  ~ ( 1 8 )  

Zrlr == £ A£ ~(% - 0 )  =0. (21) 
r r, ~- 

Note that the estimated mean 0 is not the 
arithmetic average of the observations. Two 
widely spaced data points have more influence on 

than two close together. This procedure gives 
the minimum error variance [equation (24) below] 
in the final estimate which is slightly larger than if 
the mean were in fact known a priori. It may be 
shown that the results for 0x or 0 are unaffected by 
subtracting any constant from the function F(~) 
used to calculate C~r and Ar~. Thus instead of 
F(~) we may use --1/2 G(~), which is unambigu- 
ous. 

It is also worth noting that the result above 
can be achieved by insisting that the estimate 

is. In effect the spatial mean 0 in the vicinity of the 
data points is unknown, so that it cannot serve as 
a base for the covariance function 

(0x - ~ )  (0=+~  - ~ ) .  

Thus a large unknown constant H has been added 
to F(~), where the latter is now restricted to 
separations no larger than the array size. The 
structure function 

0x = £ &xs % (22) 
s 

have a zero mean error, or zero bias. Since ~)x = ~, 
this is accomplished if 

N 
Y &~, =- 1. (23) 

The modified estimator (20) is obtained by 
minimizing the right-hand side of equation (14) 
subject to equation (23) as a constraint. The 
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minimum which remains is the variance of  the 
error and is easily shown to be: 

( 0 .  - O~) ~ = c x ,  - y~ c . ,  A;-; I C~,  
rp  $ 

(1 - -  Z C~, A~I) ~ 
q- ' ." (24) 

Z Aft i 
rp $ 

The last term is the increase associated with the 
uncertainties of  the estimated mean. 

2.4 Nonstationary mean 
Unfortunately, it is often the case that the 

ensemble mean cannot be estimated from data, 
particularlywhen this meanvalue is not stationary: 
that is when it depends on x. Imperfect knowledge 
of  the mean value influences application of the 
basic algorithm in two related ways. First, the 
fundamental estimator (7) is the optimal linear 
estimator only for variables with zero mean. 
Second, if the mean is unknown it is not possible 
to compute the covariance F(~) from observations. 
The method discussed in the previous section 
provides an objective method of dealing with both 
these difficulties in the case that the mean value is 
independent ofx .  But many mapping tasks do not 
fall in this category and for them some alternative 
method must be employed. In particular, mapping 
the MODE°I isotherms depth posed the problem 
of  dealing with unknown and apparently non- 
stationary mean values. 

In assessing the importance of imperfect 
knowledge of  the relevant mean values it is 
important to note that the proof  of  the central 
algorithm, as given in (13) and (14), does not 
depend on these mean values vanishing. If  they 
are not zero it is still true that the basic estimator 
(7) is that linear predictor of the form (13) which 
minimizes the mean square error between 0~ and 
0x. But this mean square error is not necessarily 
the error variance and the statistical quantities 
A,s and C~s defined by 

m 

A,, = cp, % Cx, = 0~ %, 

are mean products and not necessarily covariances. 
The difficulty when the mean values are not zero 
is that an estimate of  the form (13), which is 
homogeneous with respect to the data ¢Pa, is not 
the best possible linear estimator and is out- 
performed by the more general form 

O~ = Z a~, % + a r 
r 

Unfortunately, there is no direct method of  
finding ax without knowledge of  the mean values 
of 0 x and % The method of  Section 2.4 is not this 
optimum estimate. It is, rather, the best estimate 
of  the form (13) which is not influenced by the 
value of  the unknown mean if that mean value is 
independent of x. 

In order to minimize the effect of  unknown 
mean values one must deal with a very funda- 
mental problem. The basic method is based on 
mean values defined as the average over an 
ensemble of identically prepared realizations. 
Only if these mean values are independent of  x 
can they be determined from spatial and temporal 
averages. If  this is not the case no progress can be 
made without appeal to some apriori prejudice. 

One practical approach is to consider the field 
to be composed of  two components according to 

0x = 0x' + < 0 ( x ) > ,  % = ~,'  + < 0 ( x , ) > .  

The primed quantities represent small-scale 
components of  the field which are assumed to 
have small mean values. The bracketed quantity is 
a large-scale component of  the field which 
includes the overall mean of 0 but is not an 
approximation of  it. The arbitrary separation of  
these components is determined by the opera- 
tional rule used to find the value o f  < 0 > .  The 
objective used in choosing this operation is to 
make the mean value of  0'  as small as possible; 
in this case 'mean' refers to the average of  0'  
taken over an ensemble of  realizations in which 
< 0  > is chosen by the same operational rule but 
has different values. 

The choice of < 0 >  must be based on an 
a priori judgement. But this choice is not crucial to 
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accurate analysis since the basic estimator (7) will 
produce a good estimate of 0~ ', and hence 0~, even 

if the mean value'0~' is not zero. In the MODE-I 
isotherm analysis < 0 >  was defined to be 

< 0 ( x ) >  = Y a,,f.(x), 
n 

where the f ,  were chosen to be a constant and 
three functions which depend linearly on the 
position (x, y, t). It is doubtful that any method of 
choosing the a, could insure that the mean of 0' 
would vanish. Fortunately, this is not essential 
since the basic algorithm allows 0' to be well 
mapped with any reasonable choice. For example, 
if the measurement positions x, are uniformly 
distributed the usual squares fitting technique of 
mm~mmng 

Z [~  -- E a . f .  (x~)] z (25) 
r n 

might be employed. Despite the arbitrary nature 
of this procedure, it defines <0  > in such a way 
that the mean of 0' is probably not large. 

A somewhat more refined method of defining 
< 0  > ,  which is more appropriate to nonuniformly 
spaced measurements, makes use of an extension 
of the objective estimation technique. Clearly, 
minimizing the sum (25) yields results which 
depend not only on the field 0 but also on the 
positions at which the measurements are made. A 
less arbitrary definition of <0  > can be obtained 
by minimizing 

Techniques for accomplishing this integral are 
given in Section 2.6 where it is shown that this 
weighted integral of the optimal estimate 6 is 
equal to the optimal estimate of the same weighted 
integral of 0 itself. It must be pointed out that this 
more refined definition of  < 0 >  involves an 
iterative process associated with the cycle of 
evaluating <0  > ,  calculating the mean products of 
0' and q~', and then re-evaluating < 0 > .  

2.5 l/ector f ields 
It is not necessary that the variable to be 

estimated be a scalar. For example, given observa- 
tions of velocity at N points x ,  it is a simple 
matter to adapt the basic technique to making 
optimal estimates of  the continuous velocity 
field. One procedure is to estimate separately 
the components u~(x) using as data the measured 
values of the components of velocity at x,. Thus 
for a two-dimensional field there are 2N data 
which can be denoted as 

where r ~ 1 . . . . .  N and the tilde denotes a 
measured value. The matrix A has 2N × 2N 
elements 

A~.~ -- ul (x,) u 1 (x~) + E fi,~, 

A~,~ i N ~ As +N,r ~- Ul (Xr) U2 (Xs)' 

A N  ~ r ,N ~ s -~  U2 (Xr)  119 (Xs) -~- E 5,~. 

f [()x -- Z anf~ (x)] a dx, 
n 

S 

where S is that portion of x over which 0 is to be 
mapped and 0 is the best estimate over that region. 
If  the trial functions are, for convenience, made 
orthogonal over this region, then determining a,, 
involves evaluation of the integral 

According to the fundamental result (7), the best 
estimate of  the velocity components is 

~,(x) = E -xrC"'rlr = Z -xrC~i) t %  , (27) 
r = l  r = l  

where, from (9), 

c~'?r = u~ (x) ul (xr), r . ~  , ~ X .  r + N  = Ul  ( X )  U 2 ( X r ) ,  

f 0xf.(x) 
s 

dx. (26) 
If the velocity field is homogeneous and iso- 

trophic the velocity covariances can be derived 
(cf. BATCHELOR, 1960) from two scalar functions 
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R(p) and S(p) according to 

u~ (x) uj (x+r)  = Z~ Zj [R(p) -- S(p)] + 60 S(p), 

where p = [r ], R and S are known, respectively, 
the longitudinal and transverse velocity co- 
variances, and Z~ is the cosine of the angle between 
r and the i axis. If  the field is known to be non- 
divergent then the velocity is derivable from a 
stream function di(x) according to 

8+ 8+ (28a, b) 
ul  = - -  8X%' us - -  8X 1' 

and the two covariance functions can be derived 
from a single function. Taking the covariance of 
the stream function to be 

+ (x+r)  + (x) = F(p), (28c) 

then 

1 dF d~F 
S(p) . . . .  (28d, e) R(p) = p dp' dp 2 

The r.m.s, errors associated with the estimate f~(x) 
are most usefully plotted as maps of the normal- 
ized standard deviation of the total velocity 

{lo-ul } _ 

{[ul2p/2 
_ 

c(i) -1 C(O Z Z _,,, A .  _,,~ 
i r,$ 

C (i) 
- - x x  

i 

I12 

(29) 

It is important to note that if ~ is determined 
using (27)and the covariances Ct~, ) are derived 
from a covariance function appropriate to a non- 
divergent field then the divergence of the estimated 
field will vanish identically. This is so because 

8ila ,gfi~ {8C~  ) 8C~2, ) } 
8xZ ' '  

vanishes when the covariances are taken from a 
nondivergent field, regardless of the weights 11, or 
the data % upon which they depend. In a later 
section it will be shown that this is related to a 
general result of considerable significance when 
objective maps are used to test dynamical 
hypotheses. 

It is generally found that when the velocity 
field is nondivergent the most useful presentation 
of the estimated field fi is in the form of a map of 
the stream function ~. There are two seemingly 
different approaches possible here but, happily, 
they produce the same result. The first approach 
is to abandon the velocity estimate in (27) and 
form the best estimate of the true stream function. 
It is seen that this is accomplished using an 
expression similar to (7), 

2N { 2N 
(x) = z Pxr z A2 % (30) 

r = l  s= l  J 

Px., = qb(x) u, (Xl) , Px.~+N = d? (X) U, (X,). 

The alternative is to derive a stream function from 
the velocity estimates ft. This is accomplished by 
computing ~ from 

?~ (x) = f u, (r) dra -- / ul (r) dr~ + +(xo), (31) 
Xo Xo 

which, it should be noted, does not depend on the 
integration path if the divergence of fi vanishes. 
Inspection of (27), from which fi is computed, 
shows that this result is identical with that obtained 
by estimating the stream function directly. This is 
the result of an important aspect of the basic 
estimation algorithm, which is discussed in the 
following section. 

In the case of an isotrophic nondivergent field 
the covariances P appearing in (30) can be found 
directly from (28): 

dF  
+ (x) ux (x+r)  = -- y~ : - ,  

ap  

\Oxl + @" 8x2! 
dF (x) u~ (x+r)  = ~1 __, 
ap  
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where p = ]r]. When the field is not isotrophic 
i * 

the relevant covariances must be derived from 
the more complicated velocity covariance matrix. 

2.6 Operationally defined fields 
The stream function, whose estimation was 

discussed in the previous section, is an example of 
a quantity which is defined by a linear operation on 
the field which is measured; the definition (30) 
relates the stream function to the components of 
velocity through an integral operator. It is often 
desirable to estimate such derived quantities, and 
it is a major asset of the objective analysis tech- 
nique that this is readily accomplished. Examples 
of dynamically interesting derived fields are trans- 
port between two positions (which might be com- 
pared with dynamic height differences to test geo- 
strophy), vorticity, divergence, heat content (the 
integral of temperature over a region), circulation, 
and weighted integrals such as (26). One additional 
example, which plays a central role in the evalua- 
tion of the synoptic mapping ability of arrays, is 
the estimation of smoothed or filtered fields 
defined by operations of the form 

T~ ~= f 0(r) W(r --  x) dr, 
r 

(32) 

where the smoothing function Wis centred around 
r - - x = 0 .  

The determination of such derived fields is 
accomplished without significant extension of the 
basic technique. Let the derived quantity be 
defined by a linear differential or integral operator 
L acting on the field 0 according to 

T~ - L~ (0). (33) 

According to the basic algorithm (7), the least 
mean square error estimate of Tx is 

T~ = X Q~, q, = E Q,,, A~  q~,, (34) 
r r ,  

where % are imperfect measurements of 0, A,s is 
given by (8) and, from (9) 

Qx, = % T~ :-  % L~ (0). 

The mean square error, given by a modification 
of (10), is 

(T x -  ~x)~__ ~ 2 _  Z Q~,QxsA;~. (35) 
r, s 

Two features of the estimate T are important 
to note. First, the weights 11, are the same regard- 
less of what quantity is being estimated. Thus the 
weights used to estimate 0 x are the same as those 
used to estimate L~(0); it is only the covariance 
Q~, which changes. The second observation 
follows directly from the first: the best estimate 
of Lx(0), a linear operation on 0, is equal to that 
operation on the best estimate of 0, that is L(Ox). 
This is easily shown, since 

g x ( 0  ) - - -  g x Z 0 X ~o r • n r ::=: • q)r  g x  ( O i '  ]q, 
r r 

is identical to (34). 
The determination of the covariance Qx, is 

usually accomplished from the more fundamental 
covariance 

Cx, = 0x % = 0~ 0~r, 

through application of the operation L. For 
example, the covariance associated with the 
filtering operation (31) is 

Qxs = f 0~ 0, W(r -x)  dr 
r 

where, if 0 has stationary statistics, the integrand 
can be expressed in terms of the covariance F of 
(9). 

2.7 Constraints and hypothesis testing 
In the previous section it was shown that the 

optimal estimate of some linear operation on a 
field is equal to the linear operation on the 
optimal estimate of the field. Further, it was shown 
that the result of linear operations on the estimated 
field is strongly influenced, and in some cases 
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completely determined, by the statistics used to 
estimate that field. For example, in Section 2.5, 
estimation of components of the velocity vector 
was discussed and it was found that the inferred 
velocity field would be nondivergent if the 
statistics used to estimate it were consistent with a 
nondivergent field. 

These properties of the objective analysis 
technique provide a useful tool for improving 
the accuracy of estimates by allowing the applica- 
tion of a priori constraints which are justified by 
reasons found outside the data base. For example, 
on theoretical rather than observational grounds 
it is desirable to constrain the horizontal velocity 
estimates associated with mesoscale motion to be 
nondivergent; enforcing this constraint is easily 
accomplished by using, in the estimation process, 
statistics which are consistent with it. Another 
example, which is used widely in meteorological 
objective analysis, arises in mapping pressure 
using both pressure measurements and observa- 
tions of the wind, which is assumed to be geo- 
strophically balanced. By employing pressure- 
wind statistics consistent with this dynamical 
constraint, it is possible to improve pressure maps 
by including wind observations. 

On the other hand, the properties of the 
analysis technique can make difficult the process 
of testing dynamical hypotheses through the use of 
objective maps. This is so because it is difficult 
to avoid the inadvertent application of some 
dynamical constraints when selecting the statistics 
used to estimate the field. If these constraints bear 
on the dynamical hypothesis being tested it is 
possible to arrive at a conclusion based more on 
the method of analysis than the data themselves. 
For example, if velocity components were esti- 
mated using the constrained velocity statistics 
of (28), the conclusion that the field was non- 
divergent would be reached regardless of the 
nature of the measurements. It is evident from 
this example that one way of testing the hypothesis 
of nondivergent flow is to compare the statistics 
of the flow field to see if they are consistent with 
the hypothesis. The alternative is to map separately 
each component using only the observations of 
that component and then compute the divergence. 

The difficulty of using objective maps to test 
certain dynamical hypotheses raises an interesting 
and fundamental question concerning the most 
appropriate way to answer dynamically motivated 
questions through the use of data. The question is 
essentially whether verification of a dynamical 
model of a phenomenon is best tested through 
comparison of synoptic observations and model 
'hindcasts', or through comparison of measured 
and predicted statistics. This is not the place to 
discuss this in detail, but a simple example will 
serve to focus the question. 

Suppose that the phenomenon under examina- 
tion is to be modelled by the linear differential 
system 

L~0 = g  with 0 = b o n B  (36) 

where b is both the necessary initial and boundary 
data. The actual dynamics of the system are 
assumed to be unknown and the question is 
whether or not they can be adequately described 
by the model. We can answer the question by 
using an incomplete set of imperfect measurements 
q~ and y, of the unknown and the forcing function, 
respectively. 

One approach is to use the measurements to 
make an estimate/~ of the boundary data over all 
B and an estimate ~ of the forcing function. Using 
these, the model could be used to hindcast 0 
according to 

L~() ----- ~ ~J = b on B. (37) 

Model verification could be approached through 
comparison of the hindcast § with an objective 
estimation of the true field. The best estimate of the 
true field would, according to (7), be 

0 X ---- I; 0x~?, Aft 1% + Z 0~y, Gff I ys, (38) 
r ,  8 r ,  8 

where A,s = %% and G,, = y,~,~. Determination 
of the prescription data for the model involves 
estimating b over B and g over all x interior to B. 
The best estimate of b would use measurements 
of both 0 and g, and would lead to exactly the 
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formula (38). Optimal estimation of g would, 
similarly, make use of all data, and would lead to 

B- !  ~,, : Z g , , O r A f i X %  + g g , , 7 ,  ,~ %. 
r ,  s r ,  $ 

The point of interest is that the outcome of the 
comparison of  the hindcast 0 with the estimated 
field 0 can be determined through examination of 
the statistics used to form the estimate. This is 
easily seen by noting that, according to (37) and 
(38), 

Lx(O--(~ ) = Z (gx ~r - -  L O~ %) Ar~ 1 ~s 
r, $ 

+ Z (gx Y, -- L 0x %) Gff ~ %, (39) 
rt $ 

and, as has already been shown, that 0 - 0  = 0 
on B. Thus the degree of similarity between hind- 
cast and 'measured' fields is directly related to the 
statistics 

L 0 x q)r and L 0 x %. 

If 0 is, in fact, described by the model (36) and 
there are no errors in determining the relevant 
statistics, then 

2.8 Es t ima ted  covariances 
Throughout the foregoing it has been assumed 

that the covariances, upon which the technique is 
based, are known. But it must be obvious that the 
determination of these quantities is a difficult task 
unless there is a great amount of data available. 
In the discussion of  the MODE-I current meter 
array in Section 4 it will be shown that serious 
errors can be made if the covariances are estimated 
from limited data. The purpose of  this subsection 
is to present some simple ideas which can aid in 
the estimation of covariances for use in objective 
analysis. Estimation of two-point statistics from 
unequally spaced data is a difficult problem which 
will be the subject of  a forthcoming paper and, 
therefore, the present discussion must be con- 
sidered as only introductory. 

The first, and absolutely essential, point is that 
the estimated covariances must be possible 
covariances, that is they must be non-negative 
definite forms. The authors have, through un- 
fortunate experience, demonstrated that if the 
estimated covariances are not non-negative forms 
then the objective analysis algorithm can yield 
extremely bad results. By non-negative form we 
do not mean that the covariance can not some- 
times have a negative algebraic value, but rather 
that every covariance matrix 

A,~ : O, Os 

L 0  x% : g x % ,  L 0 .  y, --gxY,, (40) 

respectively, and, as long as the model has a 
unique solution, the estimated and hindcast fields 
will agree exactly even though they are not 
necessarily the true field from which the data 
were drawn. 

The above example demonstrates that the 
model can be tested either by comparison of 
synoptic measurements and hindcasts, that is 
0 and 0, or through examination of  the statistics 
from which 0 is estimated, that is by determining 
if (40) holds. Regardless of how the comparison is 
done, the result is greatly influenced by the 
statistics. 

drawn from the covariance function must be a 
non-negative definite matrix in the sense that none 
of its eigenvalues are negative. 

The reason why it is essential that the co- 
variance matrices be non-negative can be seen by 
recasting the proof (given in Section 2.1) of the 
fundamental algorithm. The basic aim of the 
estimator (7) is to minimize the difference between 
the true value of 0 and an estimate 0 which is of 
the linear form (13). This error is 

N N + I  

8=~ )x - -Ox=X  ~ , % - - 0  x = x  
r = l  r = l  

~ r  q~r, 

where, for notational simplicity, the definitions 
~N+ l = -- 1 and q~N+ 1 = 0, have been introduced. 
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The Gauss-Markov theorem provides the method 
for minimizing the mean square error 

N + I  

Clearly the true mean square error must be non- 
negative for any choice of~,  and, as a consequence 

the true covariance % % must be a non-negative 
matrix. The true covariance is usually imperfectly 
known and this is not crucial. What is crucial is 
that the estimated covariance be a possible 
covariance, that is non-negative. If this is not the 
case then the 'mean square error' can be negative, 
and the process of  finding the weights, which 
involves extremizing this error, not minimizing its 
magnitude, will lead to a very bad estimator. 
Additionally, it might be pointed out that the 
optimum weights can be found from (7) only if 
the covariance matrix is positive definite, but in 
practice this distinction is rarely of  significance. 

In addition to insisting that the estimated 
covariance be positive definite, it is desirable to 
make it approximate the true covariance. The 
easiest way of  accomplishing these two objectives 
is to estimate the covariance function F(x) at a 
number of discrete values of the lag vector x and 
to choose some functional representation for F 
which approximates these estimates and 
guarantees that all covariance matrices derived 
from it are positive definite. I f  the covariances are 
stationary, so that they can be derived from some 
F(x) which depends only on separations, then the 
positive definite character is insured if the asso- 
ciated spectrum j~(K) in (4) is, for every ~, a posi- 
tive number. 

The process of  estimating the value of  the 
covariance function F(x) at discrete values of  x 
cart be aided by use of  the objective estimation 
algorithm. In doing this the data 9s are products 
of measurements of  the field, u(x) say, for which 
the covariance is to be estimated. Thus to estimate 
F(x 0) the data to be used are all possible products: 

% = u(r)u(r+x0). 

If the data are irregularly spaced it may be 

desirable to collect together all products with 
separations which are close, but do not equal 
x o. In any case, the estimate of  F(x o) is taken to be 

F(Xo) ---- E ~, %, 

and, to insure that there is no mean error, it is 
required that 

P(Xo)- Ftxo)= ~ s ~ s -  r(Xo) = ( E ~ -  1) r(xo) =0. 
$ $ 

The mean square error is then 

( F - - F )  2 = E %% ~r~s - -  F~(x0) ;  (41)  
t , $  

the simplicity of  this as compared with (14) results 
from the fact that F is, itself, a mean value. 
Minimization of  the mean square error, subject 
to the zero bias constraint that ~ ~s = 1, is easily 

$ 

accomplished by the usual technique if the 
covariance 

~,q~ = u(x,) u(x,+Xo) u(xs) u(x~+Xo) 

is known. 
It is rarely possible to estimate the fourth 

moment involved in %9s directly from data. But, 
if it is warranted to assume that the statistics of  u 

are approximately Gaussian and u = 0, then this 
statistic can be estimated from two-point co- 
variances according to 

%~o, = u(x,) U(Xr+Xo) " U(XA U(X~+Xo) 

+ U(X,) U(X~) U(X, + Xo) u(x~ + Xo) 

+ U(Xr) U(X~ + XO) U(X, + XO) U(X~). 

Relating this to the covadance function F(x) and 
substituting into (41) leads to a new expression 
for the mean square error: 

(p--F)2 _-- E {F2(x,--x~) 
r l  $ 

+ F(x~+xo--xr) F(x~+Xo-- x,)}%~, 
(42) 
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where use has been made of the contraint ~ as =:- 1. 
s 

The procedure for finding a good estimate of F(x) 
is (1) choose a first guess of the function F(x), 
(2) use this to compute the bracketed term in (42), 
(3) find the 7 which minimize the error in (42) 
subject to the constraint Z ~s -- 1, (4) use these to 

$ 

evaluate F(x) at various values of x, (5) from the 
discrete values adjust the function F, and repeat 
steps (2) to (5) until F converges. 

3. SYNOPTIC ARRAY DESIGN 

3.1 Approach 
As part of the array design exercise for 

MODE-l,  an examination of the synoptic 
mapping ability of various possible array designs 
was made. From this, a general picture of the 
resolving power of arrays was gained, and it is the 
purpose of this section to present some of these 
results. The approach here is to choose a particular 
simple array geometry and to determine that 
array's ability to map various different fields. In 
practice, the procedure of array design involves 
doing this for a number of different arrays, and 
choosing that array which strikes an appropriate 
balance between accuracy and spatial coverage. 

For the present purposes a somewhat different 
approach will be given to 'noise' than was used in 
the previous discussion. In practice, one is rarely 
able to determine from the data the extent to 
which the observed noise is due to instrumental 
effects or to a small-scale signal present in the 
field being sampled. All that is known is that the 
signals from the most closely spaced measure- 
ments available are not perfectly correlated; it is 
impossible to determine the shape of the correla- 
tion function for non-zero separations smaller 
than this smallest observed separation. The 
approach adopted here is to assume that the 
measurements are not subject to instrumental 
error but that there is a small-scale signal present. 
In this case all covariances can be computed from 
a single covariance function which, for the present 
purposes, is taken to depend only on the distance 
between the points involved. Thus 

~0,~s = 0~ ~s = 0~, 0x = F( I x r -  xs ]). (43a)  

The covariance function F will be taken to be 

F(x) = exp (--x2/R~) + E exp (--xZ/R]), (43b) 

where x = [ x I, Rc is a measure of  the scale of the 
signal (which has unit variance), and R, is the 
scale of the noise which has variance E. The 
error in estimating the unknown 0 at the position x 
will be expressed as the standard deviation 

~x = {(0x - 0x)2}, 

which, since the large-scale signal variance is 
unity, is the r.m.s, error relative to the standard 
deviation of the signal. 

One question of interest is how the mapping 
error depends on the scale of  the noise and on 
whether the noise is instrumental or due to small- 
scale variability. If the scale of the noise is allowed 
to approach zero, then the noise covariance in 
(43b) approaches a delta function of value E. This 
case is similar to, but not the same as, the situation 
in the previous discussion, where the noise was 
assumed to be instrumental. So far as mapping 
errors are concerned, the difference is confined to 
estimates at the array element positions; in the 
present case perfect observations are possible at 
each element but not in the immediate neighbour- 
hood, whereas if the noise is instrumental approxi- 
mately the same error is associated with estimates 
at and near to the elements. Aside from the error 
at the array elements there is no difference between 
instrumental noise and variability with an 
infinitesimal spatial scale. 

Before turning to the mapping ability of arrays 
it is instructive to examine the errors associated 
with extrapolation from a single measurement. 
According to (10) the error from one datum is 

~x = {1 - F~(x)/r~(0)}~2. 

It is alarming to note that the correlation between 
measurement and the signal to be estimated, that is 
F(x)/F(O), must exceed 0.95 if the error standard 
deviation is to be less than 30% of  the r.m.s. 



A technique for objective analysis and design of oceanographic experiments applied to MODE-73 573 

signal. Thus to gain a 30% estimate in the 
immediate neighborhood of the measurement (or 
even at the measurement location if the noise is 
instrumental) the noise variance must be less than 
5% of the signal variance. It  is clear f rom this 
that accurate mapping requires either closely 
spaced and noise-free measurements or an 
estimation procedure which takes into account 
many data in order to reduce errors; the objective 
interpolation method is just such a procedure. 
Further, by choosing to map  spatially filtered or 
smoothed fields it is possible to reduce errors 
below those associated with estimation of point 
values. 

3.2 Noise and scales 
The influence of  the noise variance E and the 

signal and noise scales R~ and R, on mapping 
errors will now be examined for the simple 
uniformly spaced 12-element array shown in Fig. 1. 
In the discussion the array spacing will be main- 
tained at unit value, and the field statistics, as 
described by (43b), will be allowed to vary. The 
error associated with mapping a scalar variable e x 
will be determined from (10) and portrayed as the 
r.m.s, error e x. 

Figure 1 depicts the spatial distribution of the 
mapping error for various different field statistics. 
Because the array is symmetric about  the x and y 
axes, there are four error maps shown, one in each 
quadrant, and each is labelled according to the 
parameters R~, E and R,, which describe different 
characteristics of  the field statistics. The gross 
influence of these statistical characteristics can 
be seen by comparing quadrants (b), (c) and (d) 
with (a), which serves as the standard. The para- 
meters associated with map  (a) are R~ = 0.8, 
E = 0.1 and R n : - -  0. Because the noise scale R,, is 
infinitesimal, the error jumps discontinuously to 
zero at each array position; if  the noise were 
instrumental the error map  would be identical 
except that the error at each element would be 
essentially the same as that found in the immediate 
neighborhood of  the element, that is approxi- 
mately 0.45. 

The effect of  a finite scale of  noise can be seen 
in map  (b) for which R, = 0.3 while Rc and E are 

" (dJ 

Fig. 1. Standard deviation of the mapping error for the 
symmetric array having 12 elements at the positions shown 
by x. Each quadrant is one quarter of the error map for 
different parameters of the field statistics. The parameters 
(see text) are (a) R~ ---- 0.8, E ---- 0.1, R ,  = 0; (b) R~ = 0.8, 
E ---- 0.1, R, ---- 0-3; (¢) R, ---- 1.2, E = 0.I, R,, = 0; 

(d) R~ = 0'8, E = 0. 

maintained at 0.8 and 0.1, respectively. The 
influence of  varying the noise scale is confined to 
regions near each element in which the error 
decreases rapidly to zero. As discussed earlier, the 
hypothesis that the noise is o f  extremely small 
scale leads to conservative error estimates in the 
immediate areas surrounding each element. 

The influence of  the spatial scale of  the signal 
can be seen through comparison of (a) and (c). In 
each the noise parameters are held at E = 0.1 and 
Rn ----- 0, but for (a) Rc : 0.8 while in (c) Rc = 1.2. 
As might be expected, the area of  accurate map-  
ping is greatly expanded when the signal scale 
exceeds the array spacing. 

The penalty associated with small-scale noise 
can be assessed by comparison of  maps (a) and 
(d). In both the signal scale R~ = 0-8; in (a) there is 
present noise of  infinitesimal scale and variance 
E = 0.I while in (d) there is no noise, that is 
E = 0. The extent of  useful mapping is not greatly 
changed as the area within • = 0.6 is not signifi- 
cantly different between the maps. But the region 
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of accurate mapping is greatly increased when the 
noise vanishes. 

A somewhat more complete picture of  the 
relative importance of signal scale and noise 
variance can be seen in Fig. 2 which presents the 
mapping error at the center of the 12-element 
array for various values of  Rc and E. These error 
estimates were made assuming R, = 0 but, as was 
seen above, the error this far from the array 
elements is not affected by the value of R, so long 
as it is less than about 0.3. 

3.3 Smoothing 
The discussion above pertains to mapping the 

pointwise value of the scalar variable 0. Typically 
the variable to be mapped is subject to some small- 
scale variability, associated with the noise para- 
meters E and R,, which can not be well resolved 
by an array designed to map the signal which has 
the larger scale Re. I f  it is the large-scale signal 
which is of interest then the quantity which should 
be mapped is the filtered or smoothed variable 

-- j" W (r--x)  O, dr, O~ 

r 

where the filter function W is centred around 
r - - x  = 0 but extends over sufficient area to 
suppress the small-scale components of  the field. 
Typically the errors associated with estimating 
the smoothed field are significantly less than those 
involved in estimating 0 itself. 

The filter function adopted for the present 
study is a radially symmetric Gaussian filter 

Re , 

O,1 0,2 

E 
Fig. 2. Standard deviation of mapping error at the center 
of the 12-element array shown in Fig. !. The noise scale is 

held at R~ ---- 0. 
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1 
W(x) 2 exp 

and the measure of  error is taken as the standard 
deviation of the estimation error normalized by 
the standard deviation of the smoothed field, that 
is 

Examination of the accuracy of estimating various 
smoothed fields is accomplished by holding the 
statistics of  the field, itself, fixed and varying 
the filter width R I. 

Figure 3 depicts the errors associated with 
estimating various smoothed fields derived from 
fields with point-wise covariances given by (43) 
with Rc = 0.8, E ---- 0.I and R, = 0.3; the array is 
the same as that used in Section 3.2 and the 
parameter choice is the same as those used in 
error map  (b) of  Fig. 1. Map (a) is for R i = 0 and 
reproduces, with a slight modification of  
normalization, the error estimates of  Fig. l(b); 
the error goes to zero at the array elements but 
increases to 0.7 in the interior of  the array. 
Quadrants (b), (c) and (d) show the error associated 

Fig. 3. Standard deviation of error in mapping filtered 
fields. The array is that of Fig. 1 ; the field statistics are 
described by R, = 0.8, E = 0.1, R, = 0.3 [as in Fig. l(b)]. 
Quadrant (a) is for the unfiltered field (R! = 0) while 
(b), (c) and (d) are for Rj = 0.2, 0.4 and 0.6, respectively. 
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with increasingly severe smoothing; the filter 
parameter for these maps is R / =  0.2, 0-4 and 0.6, 
respectively. The trend is dear. With increasing 
filtering the error becomes more uniform over the 
array, with the error increasing near to the array 
element and decreasing in the interior. 

It was shown in Section 2.6 that the operation 
of smoothing commutes with the estimation 
operation so that maps can be smoothed after they 
are drawn or smoothed maps may be generated 
directly. In either case, the error maps in Fig. 3 
allow some idea of the accuracy of estimating 
different components of the field. 

4. M O D E - I  C U R R E N T  METER A R R A Y  

4.1 Simulated data 
To test the objective interpolation algorithms, 

and to provide some insight into the expected 
performance of the proposed MODE-I current 
meter array, velocity fields were constructed to 
resemble (in a statistical sense) those previously 
observed in the MODE area. The most complete 
set of available data comes from Array-I (GOULD, 
SCmV, ITZ and WUNSCH, 1974) which was an array 
of 8 moorings set during fall of 1971. Continuous 
records were available for approximately 70 days 
from 6 current meters at 1500 m and 7 meters at 
3000 m together with one extra record of doubtful 
quality. Because of the small size and limited 
duration of this experiment, compounded by 
apparent inconsistencies associated with different 
mooring designs, these data were insufficient to 
determine the complete properties of currents in 
the area, and even the statistical features are 
subject to considerable uncertainty. However, for 
a design study of this type it is preferable to start 
with a velocity field which is completely and 
precisely known, provided it is qualitatively similar 
to those which will be encountered in practice. 

Accordingly, the first step was to generate a 
stream function if(x, y) which was one realization 
of a definite statistical ensemble, using a random 
number algorithm on a computer. Such an 
ensemble is determined completely by the mean 
value ~ at every point (assumed zero) and the 
two-point covariances ~(x0~b(x2) for all pairs 
xl, x~. The latter were chosen so as not to be 

inconsistent with the Array-I data, but were 
completely determined only by the application of 
considerable prejudice on the part of the authors. 
The velocity field was assumed to be 
(i) spatially homogeneous (ignoring persistent 

local topographic effects which may exist in 
realistic data), 

(ii) stationary in time (in a statistical sense only), 
(iii) isotropic (no preferred hozirontal direction), 
(iv) nondivergent [achieved by first computing d/ 

and then the velocities according to equation 
(1)1. 

The stream func t i on  covar iance is comple te ly  

determined by the longitudinal velocity wave- 
number spectrum £(k) which is the Fourier 
transform of the longitudinal eovariance R(p) of 
(28). Figure 4 depicts the spectrum adopted. It was 
chosen to be proportional to k -s for [k[ greater 
than a critical value /co, and a predetermined 
slowly increasing function of k from k ----- 0 to 
k : k o. This provides a finite mean square velocity 
with a dominant length scale, yet behaviour on 
smaller scales consistent with the theory of 2½- 
dimensional turbulence (CHARNEY, 1971). The 
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Fig. 4. The one-dimensional velocity spectrum of the 
simulated fields. The broken line marks the k -= curve. 

log k == 0 corresponds t o  a wavelength of 960 kin. 
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value of k 0 and the r.m.s, velocity were adjusted to 
fit estimates from Array-I (see below). 

This ensemble was implemented on a 48 x 48 
square grid of  points spaced 20 km apart, using 
Finite Fourier transforms from a two-dimensional 
wave number space with the same number of 
degrees of  freedom. The different (quantized) 
Fourier components are all statistically independ- 
ent of  one another, normally distributed with zero 
mean and variance proportional to the spectral 
density at that wave number for the stream 
function. For any one realization a complete set 
of such components is generated as a pseudo- 
random sequence then transformed into physical 
space. A portion of the result is shown in Fig. 5a. 
With this procedure ~b is, of  course, periodic 
in x and y with period 980 km, but as the area of  
interest does not exceed 500 km in diameter this is 
not a serious deficiency. For an independent 
realization a different starting value is supplied to 
the random number algorithm. 

To simulate the time dependence of the stream 
function field, various alternatives were con- 
sidered. To prescribe art arbitrary frequency 
spectrum in a similar manner would require a 

[J - i X.__X 2 

IO0~,M 

Fig. 5a. A typical simulated stream function field. Super- 
imposed on the field is the MODE-I array with the 

velocities at the data points represented by the arrows. 

Fig. 5b. A reconstructed version of the stream function 
field shown in Fig. 5a using the objective analysis technique. 
An r.m.s, measurement noise of 1'8 km day -1 has been 

applied to the data at the MODE-I array points. 

three-dimensional Fourier transform and con- 
siderably more storage than was readily available. 
The simplest scheme which gave a frequency 
spectrum similar to that in Array-I was to write 
each Fourier component as the sum of two 
propagating plane waves, each moving at a phase 
speed C = 5 km day -1 in opposite directions. The 
complete time development is thus specified by 
2 x 48 x 48 random real numbers in the initial 
conditions, and is subsequently fully deterministic. 
When additional small random adjustments at 
each time stop were made to the Fourier compo- 
nents (keeping the same r.m.s, level) the result was 
an overall frequency spectrum which contained 
more power at very low frequencies than seemed 
to be indicated by the data. It is recognized that 
this deterministic scheme (which simulates an 
intrinsic dynamics like that of  the propagation of 
sound waves) is essentially arbitrary, but, taken 
with the assumed spatial spectrum, it does 
reproduce the marked tendency in the available 
data for the average velocity over 70 to 80 days 
at any one current meter to be much less than the 
typical values. 

From this complete time history simulated 
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'data' were computed. The velocity components at 
a number of fixed points at intervals of 1 day were 
formed by finite differences. To each such 
'measurement' was added a random Gaussian 
error of zero mean and known standard deviation 
(usually 1.3 km day -z in each component) to 
represent the combined effects of instrument noise 
and imperfectly filtered internal waves. These time 
series became the current meter 'data'. lnaddition, 
'float trajectories' were computed by integrating 
the equation 

dx _ 0~_ (x,  y,  t); dy _ c5+ (x,  y,  t) 
dt Oy dt cgx 

forward in time from prescribed starting positions 
and recording daily fixes. In this case no random 
noise was added. 

The value of this simulated data depends on the 
degree to which it resembles the area of the real 
ocean under study. The parameters which were 
chosen to fit the available data were the r.m.s. 
velocity, the cut-off wave number k 0, the noise 
level E and the wave propagation speed C. 
Accordingly, we must now consider how this 
statistical comparison was made. 

4.2 Comparison with observations 
Full details of  the Array-I data are given by 

GOULD, SCHmTZ and WtmSCH (1974). Crude 
estimates of the statistics are shown in Figs. 6 and 
7. The longitudinal correlation coefficient for any 
pair of current meters is found by taking the low- 
frequency filtered components of velocity at each 
meter parallel to the line joining them, integrating 
their product over the shorter period for which the 
pair of records were available, and dividing by the 
product of the two r.m.s, values. For each pair the 
period of integration was between 50 and 70 days, 
beginning on 1st November 1971. The transverse 
coeffÉcient involves the components perpendicular 
to the line of centres. The frequency spectrum is 
for the period 50 days beginning on the same day. 
Slightly different values are obtained by taking 
other base periods. As discussed by GOULD, 
SCI-I~TZ and WUNSCH (1974) the speeds (but not 
direction) of the meters on surface moorings are 

probably systematic overestimates. Prior to 
analysis of this data, therefore, the speed for each 
meter was multiplied by a constant factor so that 
its r.m.s, value was equal to the r.m.s, value for 
the data set as a whole, i.e. 6.7 cm s -1. This 
empirical adjustment results in a picture which is 
seemingly much more consistent. Its only effect on 
these statistics is to give each meter equal weight 
when computing the average frequency spectra. 
The correlation coefficients are unaffected. 

Figure 6 enables rough estimates to be made of 
the spatial scale of the velocity field. Visual 
inspection of the data shows no obvious aniso- 
tropy, and this is confirmed by the correlation 
coefficients. Accordingly they are plotted as a 
function of meter separation only. Because of the 
brief duration of the experiment, the scatter is 
large except at zero separation where all 
coefficients are unity automatically. Nevertheless, 
the trend is clearly towards decreasing correlation 
at larger separations, with the lateral correlation 
passing through zero at a distance of 60 to 100 Ion. 
Also significant is the difference from unity for 
the smanest non-zero separation--where the 
coefficients appear to be around 0.92. This is a 
measure either of velocities of such small scale as to 
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correlation function which was used in the simulations. 
Similarly for the longitudinal correlations represented by 

the dots and broken line. 
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be unresolved by this array, or noise due to 
imperfect sampling. But as was seen in Section 3, 
from a practical point of view it makes no differ- 
ence to the present study. The interpolated 
velocities are smooth on a scale of at least 
60 to 100 kin, and any smaller features are 
averaged out or ignored. 

Included on Fig. 6 are the correlation functions 
assumed for the simulation study. The longitudinal 
function is R(O), of equation (28), which is the 
Fourier transform of the longitudinal velocity 
spectrum. The transverse function is 

d 
s ( p )  = 7 -  [pR(p ) ] .  

dp 

The cut-off wave number ko was chosen to make S 
pass through zero at p : 95 km. These functions 
have been normalized by dividing by the r.m.s. 
value of 4-1 km day -1 for each component. The 
random noise E = (1.8 km day-X) = was adjusted to 
give a correlation coefficient at small non-zero 
separation equal to 0.92, given the total observed 
r.m.s, of 5.8 km day -x ( =  6.7 cm s-~). These were 
the estimates made at the time, although the r.m.s. 
speed is probably too large, because of the 
tendency of current meters on surface moorings 
to indicate too high. 

The frequency spectra in Fig. 7 are subject to 
considerable uncertainty because of the small 
number of degrees of freedom. However, they 
appear to indicate a dominant period of ~ 50 days 
with much less power in the mean. The original 
data also show what resembles one cycle of an 
approximately sinusoidal variation. This feature 
is reproduced in the simulations if the phase speed 
C of the propagating Fourier components is taken 
to be around 5 km day -1. 

The sample from which these parameters were 
estimated is a small one, and it is unclear how 
many independent degrees of freedom were 
included. Furthermore, the procedure for obtain- 
ing reliable error bounds was not well understood. 
Accordingly, the first application of the simulated 
data program was to construct a number of 
realizations of the space-time velocity field, 
compute time series for current meters at the same 
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Fig.  7. "['he A r r a y - [  f requency  spectra at ]500  and 4000 m 
determined from 6 and 4 current meters, respectively, over 
a time interval of 50 days. Approximately 80~0 of the total 

energy is contained in the 50-day period. 

locations as in Array-I, and then analyse the 
latter in just the way described above. Now the 
true statistics are known exactly and the apparent 
deviations provide a measure of the uncertainty 
in the original inference. 

The longitudinal and lateral correlation 
coefficients for realization 1 over a 70-day interval 
are shown in Fig. 8a, using the restricted 6-element 
array which was all that was available at 1500 m. 
The authors found these results disconcerting 
because they indicate fairly conclusively that the 
zero crossing r c of  the transverse correlation 
coefficient is less than 50 km, whereas its true value 
is r c = 95 km. This parameter is critically impor- 
tant, because it influences the horizontal scale of 
the whole experiment and array design. However, 
realization 2 told a different story (Fig. 8b), and 
subsequent realizations did indeed indicate values 
between 80 and 100 km. Realization 1 is apparently 
an extreme case--but with a significant probability 
of occurrence. That it occurred first in a limited 
sequence is chance--but  should be a salutary 
warning against drawing precise statistical con- 
clusions from a single experiment. In practice, 
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Fig. 8b. Realization 2 as in Fig. 6a. Zero crossing of 
transverse correlation at  about 80 km. 

this means that subjective judgement based on all 
available information or prejudice must remain 
the basis for many planning decisions--though 
studies of this type can be a major input into these 
judgements. Fortunately, prior to the deployment 
of MODE-I, further information from Array 3 
became available and tended to confirm the larger 

value r c = 100 km which has been assumed for 
planning purposes. Analysis of the totality of data 
from arrays 1 and 3 plus the MODE-I data suggest 
that r c is about 80 kin, somewhat smaller than the 
value used in planning. 

4.3 Application o f  the theory to the MODE-I  array 
The next question was how well would the 

interpolation scheme reproduce the flow field if 
applied to 'data' from the MODE-I current meter 
array. The answer presupposes that the estimates 
of the dominant length scale and noise level made 
in Section 4.2 are indeed accurate, as well as the 
more obvious requirement that all the instruments 
in the array should actually function correctly. 
Since the latter is improbable some further 
deterioration in performance is to be expected. 

The first form for this answer requires only a 
knowledge of the array geometry, the spatial 
correlation functions and the noise level. Equation 
(10) gives the mean square error in the interpolated 
estimate for one component of velocity. A more 
intelligible measure is the r.m.s, error in the total 
velocity divided by the r.m.s, velocity itself, 
expressed as a function of position, which is given 
by equation (29). Figure 9 is a contour map of this 

/ 

/ 
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Fig. 9. The per cent r.m.s, error in velocity for the 
MODE-I  array (configuration of dots). The correlation 
functions shown in Fig. 6 were used in this 'error map'.  
In the central area where the data coverage is good, the 

expected error is less than 30%. 
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quantity expressed as a percentage. Dots mark 
the positions of the data points and the correlation 
function R(p) used is shown in Fig. 6 (as solid 
curve). In the central regions where the array is 
relatively dense, the maximum expected error is 

O/  around 30/o, whereas in the sparser pattern 
recognition areas it rises to 50 %. At first sight these 
values are large, but it should be recalled that a 
random noise of 1.3 km day -1 in each component 
superimposed upon a current of r.m.s, speed 
6.7 km day -1 represents an r.m.s, error of over 
25%, so in the inner region a very much more 
dense array would be needed to give a significant 
improvement in accuracy. From Array-I this noise 
level appeared to be intrinsic either to the instru- 
mentation plus mooring system, or to sampling 
in the presence of small-scale velocity features. 
It is hoped that these estimates will prove to be 
pessimistic, otherwise they provide a fairly 
fundamental limitation on the accuracy obtainable 
from a current meter array under these 
circumstances. 

For many purposes great accuracy in the 
estimate of velocity at a point is not required. A 
test for geostrophic balance is best made by 
integrating over the horizontal distance between 
two points to give the stream function, and then 
comparing with the pressure difference between 
these points. The percentage error in a measure- 
ment of this type is reduced by averaging over 
several independent current meters. Figure 10 
shows the percentage r.m.s, error in the stream 
function difference between a base point and the 
general point on the map. Over the central region 
this is less than 20%. 

A more impressionistic method of testing the 
data array is provided by Fig. 5. Application of 
the formula given by equation (30) results in the 
interpolated stream function field shown in Fig. 5b. 
The data supplied for this reconstructed stream 
function field came from the original flow field 
shown in Fig. 5b at the sixteen data positions 
marked. This was the MODE-I array. The 
general features of the flow field are reproduced 
strikingly well, and pattern recognition is 
achieved everywhere. On the other hand closer 
investigation does reveal differences, particularly 
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Fig. 10. The per cent r.m.s, error in transport of stream 
function difference between the central data point and the 
general point on the map. The expected error in the central 

region is less than 20%. 

in the local gradients, which are symptoms of the 
errors quantified in Fig. 9. 

Figure 11 describes a different test of the array. 
One objective of the experiment was an inter- 

. . 

100 KM 

Fig. 1 I. The 30-day trajectories of two floats A and B 
marked by the solid curves are calculated from the 
simulated velocity field. The crosses mark the positions at 
5-day intervals. Using the data array marked by the dots 
the velocity field was objectively reconstructed at l-day 
intervals for 30 days and the broken curves representing 
the trajectories of floats A and B are redrawn from this 

reconstructed field. 



A technique for objective analysis and design of oceanographic experiments applied to MODE-73 581 

comparison of  the trajectories followed by 
freely moving floats with the velocities indicated 
by current meters. The true Lagrangian trajectory 
found by integrating in time the local exact 
velocity is compared to an estimated trajectory 
based on interpolations from the simulated data 
(including random noise) at the indicated current 
meter positions, starting at the same initial 
position. Again the general agreement is good, 
although the original and reconstructed trajec- 
tories diverge increasingly with time until after 
30 days there was little resemblance. Float A was 
on the fringe of  the array and moved outside it, 
at which time the most obvious discrepancies 
arose. Float B was at first within the central 
accurate mapping region. The differences in detail 
from the original do indicate significant errors in 
the reconstruction, which would be reduced only 
by a more dense coverage of current meters. This 
is a more sensitive test than comparing stream 
functions because it depends on point estimates of 
velocity rather than integrated values. However, 
it is felt that this approach is a reasonable way of 
intercomparing current meters and floats. 

5. CONCLUSION 

Given the statistics of a flow field we have 
shown how one can construct, objectively, a map 
of that flow field from a finite sample of  data 
points. The accuracy of reproduction depends on 
how well the statistics are known, on the density of 
sampling points, and on the quantity to be 
mapped. It has been shown that with a knowledge 
of  the exact statistics of a flow field (except for 
some simulated error) and a realistic density of 
data points, this technique will reproduce the 
pattern of  flow with a high degree of  accuracy. 
However, it has been pointed out that recovery of 
the known statistics of the simulated data with a 
limited sample of data points can lead to sub- 
stantially different conclusions about the flow 
field. A continuing effort needs to be made to 
improve methods of determining flow statistics in 
the ocean, and only when such methods are 
available can this technique be applied confi- 
dently. 

REFERENCES 
BATCHELOR G.  K.  (1960) Theory o f  homogeneous 

turbulence, Cambr idge  Univers i ty  Press. 
BREKHOVSKIKH L. M., K.  N.  FEDOROV, L. M. FOMIN, 

M. N. KOSHLYAKOV and A. D. YAMPO~KY (1971) 
Large scale multi-buoy experiment in the tropical 
Atlantic. Deep-Sea Research, 18, 1189-1206. 

CHARNEY J. G. (1971) Geostrophic turbulence. Journal 
of Atmospheric Science, 28, 1087-1095. 

ELLIOTT A. J., M. R. HOWE and R. I. TArt (1974) 
The lateral coherence of a system of thermo-haline 
layers in the deep ocean. Deep-Sea Research, 21, 
95-107. 

GANDIN L. S. (1965) Objective analysis of meteoro- 
logical fields, Israel Program for Scientific Transla- 
tions. 

GOULD W. J., W. J. SCnMITZ and C. WuNscn (1974) 
Preliminary field results for a Mid-Ocean 
Dynamics Experiment (MODE-0). Deep-Sea 
Research, 21, 911-931. 

LmBELT P. B. (1967) An introduction to optimal 
estimation, Addison-Wesley. 

SAUNDERS P. M. (1972) Space and time variability of 
temperature in the upper ocean. Deep-Sea Research, 
19, 467-480. 

A P P E N D I X  

Equation (l l)  can be written as 

N 
~p, = Z n,A,, .  (Al) 

Replacing A,~ by A,, + H, (A1) becomes 

N 
q~,---- Z n,(A, ,  + H ) ,  

r = l  

N N 
Z ~ , A , , = ~ o , - - H Z  ~,, 

r = l  r = l  

N 
~r = Z (A-l),, (~oo -- ~), (A2) 

s = l  

N 
where {) = H Z ~, is at present unknown. 

r ~ l  
Replacing Cx, by C,~, + H, equation (12) becomes 

0~= z (C,,+H)n, 
r 

= ~ + z c~,  { z  A~,, (~0 - ~)}, (A3)  
r $ 

which is the same as equation (20). 
In order to determine ~ we now sum (A2) for r = l ..... N. 

~" n r  = Z ( A ~ I ) , #  (q)s - -  ~ ) ,  
r r ,  s 
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i.e. 
A~ * ~os 

r ,  $ 

AT, l + l 
rp $ 

Thus 

~ r ~ 8  

5: A;1 
r ,  $ 

Note that with {J given by (A4) 
r 

(A4) 

Considering the formal  l imit H - -  ~ gives us an expression 
for 0 independent of H. rl, ~: O. 


