Shipboard ADCP processing workshop Nov 11-13, 2019 National Oceanography Centre, UK

UHDAS ADCP data Acquisition and CODAS processing

UHDAS + CODAS Documentation

Outline

Day 1: Morning:

- Seminar: Maximizing the Scientific Value of Ocean Current data from Shipboard ADCP
- 2. ADCP Data Acquisition
 - compare: VmDAS UHDAS
 - 3. CODAS Processing
 - 4. Data Stewardship

After: Practice

Maximizing the Scientific Value of Ocean Current data from Shipboard ADCP

Monday November 11, 2019 National Oceanography Centre Southampton, UK

Dr. Julia M. Hummon University of Hawaii hummon@hawaii.edu

https://currents.soest.hawaii.edu

<u>Overview</u>

- what is shipboard ADCP? who uses the data?
- where are SADCPs installed?
 - introduction to U.S. Academic Research Fleet; NOAA
- data flow (part 1):
 - acquisition, data on the ship
- maximizing scientific value of shipboard ADCP
 - make it work well; keep it working well
 - make it available immediately and in the future
 - be able to reprocess after the cruise
- data flow (part 2):
 - roles of processing, scientists, national archive

os75nb 42.5°N 40°N 0.5 37.5°N Depth (km) 35°N 32.5°N start 72°W 68°W 64°W 60°W 56°W 22 21 25 0.5 m/s ADCP temperature, °C 39 to 49m

os75nb: last time 2011/11/06 15:49:55

After Processing

Who uses the data? What is it good for?

at sea:

- operations, eg:
 - currents for over-the-side work (moorings, CTD)
 - backscatter levels for targeted biological sampling
 - currents for ROV operators
- dynamic sampling, eg:
 - where is the front?
 - when did we cross the front?
 - which direction will the instrument drift after deployment?

R/V Pelican Mooring cruise, Gulf of Mexico

Kilo Moana: 38kHz ADCP backscatter (tropical eastern pacific)

Scientific relevance of shipboard ADCP data

- process studies:
 - near-inertial motion
 - internal wave energy (upward propagation of phase)
 - high-frequency internal waves (on station)
 - context for small-scale mixing studies
- time series
 - dedicated, on station (HOT, BATS)
 - transects: Drake Passage, Oleander
 - after the fact: equatorial Pacific
- comparison with satellites
- backscatter (even if uncalibrated)

examples follow...

Near-inertial motion caused by strong winds;

stratified ocean keeps the energy at the surface

Time Series Examples

Laurence M. Gould: Drake Passage

Lenn et all, JMR, 2007

Time Series: Equatorial Pacific

200

400

600

200

400

600

8.0°S

8.0°S

SADCP from TAO sections Crevatte et al, JMR 2017

4.0°S

4.0°S

 0.0°

4.0°N

4.0°N

0.5

FIG. 12. Mean zonal velocity from (top) SADCP data and (bottom) Argo velocity product at (left) 170°W, (center) 155°W, and (right) 140°W in cm s⁻¹. Superimposed are some selected isopycnals.

Where are scientific shipboard ADCPs installed?

- Internationally:
 - oceanographic research vessels
 - smaller science vessels
 - Navy ships
- In the United States:
 - Academic Research Fleet ("UNOLS" = ~20 ships)
 - general oceanography: 30m-85m, polar: 70m-130m
 - operated by 12 different institutions
 - each ship sails with 1-6 techs (depending on ship size)
 - Nat'l Oceanographic and Atmospheric Admin (NOAA=11 ships)
 - each ship sails with 2 techs
 - smaller science vessels

UHDAS Installations supported: by year

Data flow: from ship to science

- acquisition, data on the ship
 - VmDAS (available from RDI, windows)
 - UHDAS (from University of Hawaii, linux)
- roles of processing
 - On the ship?
 - Does the scientist process the data?
 - Is there a "processing facility" cleaning the data?
- U.S. national archive
 - JASADCP (for processed science-ready SADCP)
 - NCEI (via R2R) "as collected" UHDAS SADCP

Maximizing the Scientific Value of Shipboard ADCP

- make it work well; keep it working well
- make it available immediately and in the future
- be able to reprocess it in the future

links:

UHDAS Operations
Comparison between UHDAS and VmDAS

ADCP:

Getting Ocean Currents

Summary of steps:

Doppler to beam (not shown)

below here: measured velocity (coordinate transformations)

- beam to instrument
- instrument to ship
- ship to earth
- averaging

below here: ocean velocitiesremove ship's speed

ADCP preliminary Processing

- "processing" requires (at minimum)
 - transform from beam coordinates to horizontal
 - rotation into ship coordinates
 - further rotation based on heading
 - removal of ship's speed

CODAS processing also has single-ping editing:

- velocity editing based on acoustic interference
- removal of data below the bottom (and side-lobe)
- weak (short), biased profiles
- remaining statistical outliers
- averaging
 - CODAS directory is staged for post-processing
 - 5Gb cruise directory distilled down to 50Mb-100Mb

CODAS single-ping editing based on acoustic interference

CODAS processing overview

- built from scratch for shipboard ADCP
- data are stored in a <u>CODAS database</u>; routines for manipulation
- open source (Python3, C)
- runs natively on Mac, Linux
- fully functional virtual linux computer available (Virtual Box)
- modular, configurable
- pairs well with UHDAS data, (can be used for VmDAS data)
- visualization tools, calibration tools
- documented and freely available

link: CODAS+UHDAS documentation

https://currents.soest.hawaii.edu/docs/adcp_doc/index.html

How UHDAS improves the quality of shipboard ADCP data

- •acquisition (ADCP, position, heading)
 - easy to use; can return to known-working settings
- automated processing ("pre-processing" at sea)
- monitoring
 - on ship: via at-sea web site
 - on land: automated daily emails to UHDAS Team
 - feedback to technicians on the ship

•data and products for

- operations and science at sea
- ease of post-processing after the cruise
- discovery/evaluation in the future

Monitoring

- on ship:
 - via at-sea web site
- on land
 - automated daily emails to UHDAS Team
 - Dashboard with cruise status, figs, diagnostics
 - ticketing system: first pass at identifying problems:
 - notifies the team of a problem
 - mechanism for tracking problems (eg, cruise, ship, instrument)
 - has guidance for common problems
- Team provides feedback to technicians on the ship

Equatorial Cross-section R/V James Cook Oct 21-24, 2019

UHDAS vs/ VmDAS data quality and processing effort

JASADCP:

science-ready shipboard ADCP ocean currents

> potential benefit to science

UHDAS designed to:

- maximize raw data quality
- reduce total processing effort

cost (processing effort)

CODAS data and products

At sea:

- example web page at sea (James Cook Oct 31,2019)
 - figures for operations and science at sea
 - netCDF data files for science
 - complete CODAS+UHDAS documentation
- access to data+processing directories
 - matlab data files
 - archive of daily figures

CODAS data and data products, cont

After the cruise:

For immediate use, cruise directory has

- processing directories
 - matlab data files
 - netCDF file
 - archive of daily figures
 - ready for post-processing
- raw data directories
 - evaluate quality of the ADCP or ancillary data
 - reprocess with different inputs
 - reprocess with different averaging duration

CODAS data and data products, cont

After the cruise:

For <u>future use</u>, cruise directory has

- "reports" directory, with summaries of
 - calibration
 - settings used
 - figures from the cruise
- This is suitable for showing on a web site, to allow exploration of older datasets, and to find "low-hanging fruit"

example (Atlantis)

Archiving and long-term use ...

Historically in the U.S.

Past and Present

Joint Archive for Shipboard ADCP

Part of NCEI

Serving science-ready data since 1992.

Over 800 cruises so far...

Present and Future:

- two paths to finalized public data
- more opportunities for original data to be used

References

Drake Passage

• Vertical structure and transport of the Antarctic Circumpolar Current in Drake Passage from direct velocity observations

Journal of Geophysical Research, 116, C08015; 2011; Y. Firing, T. Chereskin, M. Masloff

• Mean jets, mesoscale variability and eddy momentum fluxes in the surface layer of the Antarctic Circumpolar Current in Drake Passage

Journal of Marine Research, 65, 27–58, 2007; Y.-D. Lenn, T. K. Chereskin, J. Sprintall, E. Firing

Equatorial Pacific

• Subthermocline and Intermediate Zonal Currents in the Tropical Pacific Ocean: Paths and Vertical Structure

Journal of Physical Oceanography, 47, 2305-2324,2017; S. Cravatte, E. Kestenare, F. Marin, P. Dutrieux, E. Firing

 Annual Reversal of the Equatorial Intermediate Current in the Pacific: Observations and Model Diagnostics

Journal of Physical Oceanography, 40, 915-933, 2010; F. Marin, E. Kestenare, T. Delcroix, F.Durand, S. Cravatte, G. Eldin

Equatorial Cross-section R/V James Cook Oct 21-24, 2019

break for tea

Part 2:

- CODAS processing
- diagnosing errors in ADCP datasets

Time, ADCP, Position, Attitude primitive (raw) data

CODAS Processing

CODAS Processing Overview

CODAS: Common Ocean Data Access System

- Portable (multiple operating systems)
- Self-descriptive (like netCDF)
- Aggregated files (multiple files)
- Designed for ADCP data
- "CODAS Processing" → produce ocean velocities
- Tools to access and modify CODAS files

"CODAS" ADCP Processing

Goals

- Run on multiple operating systems
 - (Windows, OSX, Linux)
- Open source, free (Python)
- Flexible (tweak, tune, patch, augment)

Processing

- Written for ADCP data
- Works with most RDI ADCPs (link)
- Balance real-time product with recoverable dataset
- Single-ping (automated) and manual editing
- Calibration diagnostics and routines
- Documented

CODAS Processing Supports...

Python CODAS support

Acquisition program			j type	file type (suffix)	Averaged? or raw?
DAS2.48	Narrowband	nb		pingdata	avg
VmDAS	Broadband/ or		bb	LTA, STA	avg
	Workhorse			ENR	raw
	Ocean Surveyor	nb		LTA, STA	avg
				ENR(N1R,N2R)	raw
			bb	LTA, STA	avg
				ENR(N1R,N2R)	raw
		nb	bb	ENR(N1R,N2R)	raw
UHDAS	NB150,NB300	nb		raw	raw
	Ocean Surveyor	nb		raw	raw
			bb	raw	raw
		nb	bb	raw	raw
	WH300		bb	raw	raw

CODAS processing: 2 modes

(1) process single-ping data

- beam-to-earth coordinates
- single-ping editing (acoustic interference, bottom)
- create averages; save to disk
- load averages into CODAS database

(2) load averaged data into CODAS database

- 1980's PINGDATA
- VmDAS: *.LTA, *.STA

(no single-ping editing)

Next: "post-processing steps"

CODAS post-processing:

- View figures and logfiles
- Fix heading:
 - patch gappy but accurate heading correction (if relevant)
 - apply time-dependent heading correction
- Determine corrections/calibrations, then apply
 - remaining transducer offset
 - scale factor (if relevant)
 - transducer-GPS offset (in meters)
- Manually edit out bad data (dataviewer.py tutorial)
 - graphically select bins, profiles
 - using thresholds
- check calibrations
- make figures (web page); export data (matlab, netCDF)

CODAS software tools:

- Tools for or raw (single-ping) ADCP data:
- visualization of beam values
 - RSSI (signal return)
 - beam velocity
- estimate EA (transducer angle)
- conversion of NMEA strings to "rbin" data files
 - N1R, N2R, N3R (from VmDAS)
 - UHDAS raw serial data
- tools to plot rbin data:
 - plot POSMV quality
 - plot navigation over topography
 - plot one (or compare two) rbin data streams

RDI ADCPs

UHDAS data products

CODAS Processing

- Editing (single-ping)
 - Acoustic interference
 - Bubbles
 - Below bottom
- Editing CODAS database averages (dataviewer.py)

(patch hcorr.py)

- Interpolate missing heading correction
- Apply calibrations
 - Scale factor
 - Rotation
 - Transducer offset (new)

CODAS Processing

- Editing (single-ping)
 - Acoustic interference
 - Bubbles
 - Below bottom

BFFORF AVERAGING

- Editing CODAS database averages "gee-autoedit"
- Interpolate missing heading correction
- Apply calibrations
 - Scale factor
 - Rotation
 - Transducer offset (uncommon/experimental)

(I) ADCP: Getting Ocean Velocity

ADCP:

Acoustic

Doppler

Current

Profiler

ADCP:

Acoustic

Doppler

Current Profiler

lower frequency

higher frequency

soundspeed = frequency X wavelength
(ocean) (instrument)

ADCP:

Acoustic Doppler Current

Profiler

"Gating" the return over time results in "bins" in the vertical, creating a profile of information

ADCP Getting Ocean Currents

Two opposite beams make a vertical plane

ADCP:

Getting Ocean Currents

Now we see the horizontal and vertical velocities on the two planes

Use the horizontal velocities for determining ocean velocities requires more steps.

ADCP Single-ping Editing

The most common causes of error (addressed by single-ping editing)

- Acoustic Interference
- Bubbles
- Below bottom

Both tend to cause bias towards zero in measured velocity

ADCP Single-ping Editing

The most common causes of error (addressed by single-ping editing)

- Acoustic Interference
- Bubbles
- Below bottom

ADCP Processing

Singleping editing: acoustic interference

ADCP Processing: editing out interference

ADCP Processing: editing out interference

ADCP Processing without singleping editing

Averaged ocean velocities

NOTE: along-track direction bias

ADCP Processing: acoustic interference

WITHOUT singleping editing

USING singleping editing

ADCP Single-ping Editing

The most common causes of error (addressed by single-ping editing)

- Acoustic Interference
- Bubbles
- Below bottom

single-ping editing:underway bias

ADCP Data: effect of bubbles

Bubbles:

- short profiles
- strongly biased towards zero

Untreated:

biased ocean velocities

Acoustic Interference

Bubbles and alongtrack bias

ADCP Single-ping Editing

The most common causes of error (addressed by single-ping editing)

- Acoustic Interference
- Bubbles
- Below bottom

Bottom Editing:

- remove acoustic interference, identify maximum amplitude
- calculate region of side-lobe interference
- flag as BAD all data below the bottom or with side-lobe interference

CODAS Postprocessing

- Editing (single-ping)
 - Acoustic interference
 - Bubbles
 - Below bottom

- Interpolate missing heading correction
- Apply calibrations
 - Rotation
 - Scale factor
 - Transducer offset (new)
- Manually edit CODAS database averages "gee-autoedit"

CODAS Postprocessing

- Editing (single-ping)
 - Acoustic interference
 - Bubbles
 - Below bottom

- UHDAS processing demo
- Interpolate missing heading correction
- Apply calibrations
 - Rotation
 - Scale factor
 - Transducer offset (new)
- Manually edit CODAS database averages "gee-autoedit"

CODAS Postprocessing

- Editing (single-ping)
 - Acoustic interference
 - Bubbles
 - Below bottom
- Interpolate missing heading correction
- Apply calibrations
 - Rotation
 - Scale factor
 - Transducer offset (new)
- Manually edit CODAS database averages "gee-autoedit"

CODAS Processing: Calibration

- Calibration of averaged data:
 - Cross-track error (angle error)
 - Incorrect transducer angle (constant)
 - Inaccurate heading (time-varying)
 - Alongtrack bias (scale factor)
 - Soundspeed (single-ceramic transducers only)
 - Transition Error
 - Horizontal offset between GPS and ADCP

Calibration: Angle Error

Cross-track bias in ocean velocity from angle error: (heading + transducer angle)

Symptom = Cross-Track Error Cause = incorrect angle applied

Angle applied comes from

- Transducer angle (beam "3" clockwise from bow)
- Heading of ship
 - VmDAS,
 - -"Primary" heading, often no QC message
 - -If "Primary" fails, replace with "Secondary"
 - · UHDAS,
 - -Reliable heading for each ping (eg gyro)
 - -Heading correction for each averaging period
 - -Calculated relative to devices such as Ashtech, POSMV, Seapath, Mahrs, Phins (hopefully with QC fields)

Symptom = Cross-Track Error Cause = incorrect angle applied

Angle applied comes from

Transducer angle (beam "3" clockwise from bow)

This is a **constant value** for the whole cruise Examples of error in transducer angle follow...

water track phase calibration

1 deg. error = 10cm/s crosstrack error at 10kts

Examples of along-track error

Remove during single-ping editing

- Acoustic interference
- Bubbles (underway bias)

Correct after averaging:

Scale factor (NB150 soundspeed correction)

Calibration: scale factor (alongtrack bias)

Ocean U (after scalefactor)

Diff: after-before

Ocean V (original)

Ocean V (after scalefactor)

Diff: after-before

Calibration: ADCP-GPS offset

(1) Cross-track error:

recovery requires accurate heading

(2) Along-track error:

- may indicate a serious problem
- recovery may be possible, incomplete, ambiguous

(3) Transition/maneuvering error

Lag or offset in time or space

Example: offset between ADCP and GPS creates an artifact during maneuvering

Transducer offset from GPS--error occurs: transition between on-station and underway

lunch break

CODAS Processing

practical matters

acquisition	data stored to disk		load the database	
program name	averaged	singleping	translate to *.bin + *.cmd	executable (to load)
DAS2.48	pingdata.*		(no)	loadping
VmDAS	*.STA *.LTA		load_lta.m	Idcodas
VmDAS		*.ENR *.ENS *.ENX	load_ens.m	ldcodas
UHDAS		*.raw	load_uhblk	ldcodas

These steps
use only the
CODAS files
so work on
any averaged
data, regardless
of the source

- single-ping editing
- LTA/STA
- PINGDATA

UHDAS cruise directory structure

subdirectory	contents	importance	back up for
raw	all raw data	critical	archiving
rbin	intermediate files	nice to have	anyone who gets 'raw'
gbin	intermediate files	nice to have	anyone who gets 'raw'
proc	processed data	final at-sea product	science CD after cruise
	 codas database underway figure archive matlab files 	CODAS	PROCESSING
reports	mini-webpage with metadata and overview of processed data	nice to have (only in modern cruise directories)	science CD after cruise

(link in documentation – [raw+rbin+gbin] directories)

VmDAS vs/ UHDAS

Wed AM

Overview: Matching UHDAS and VmDAS Components

Category	UHDAS	VMDAS
Acquisition	see	next
Logfiles Settings		page
Transformations Averaging	see	2nd
Preliminary processing Monitoring		page

Data flow: acquisition

<u>task</u>	<u>UHDAS</u>	<u>VmDAS</u>
talk to instrument	DAS nv	vmdas.exe
 talk to instrument timestamps + write to disk: 	DAS.py	viridas.exe
- ADCP(s)	raw/adcp/*.raw	*.ENR
- NMEA (serial, udp)	raw/serial/*.msg	*N1R, N2R, N3R
 write intermediate files 	rbin/serial/*.rbin	
 correct the timestamps: 		
- write lookup table	gbin /ztimefit.txt :	
- write ADCP data again		*ENS
 write logfiles 	raw/log/*	*.LOG
 note settings 	raw/config	*.VMO

Data flow: editing + averaging + calibration = preliminary processing

	<u>task</u>	<u>UHDAS</u>	<u>VmDAS</u>
•	transform to earth:	(in memory)	*.ENX
•	create averages:		
	- edit single-ping earth data:	(in memory)	
	- average, write averages	CODAS database	*STA, *LTA
•	preliminary processing:		
	- assess calibration:	watertrack	
		bottomtrack	
		ADCP-GPS offset	
•	monitoring, access		
	- make plots	web site on ship	PC monitor
	- store plots	- web site on ship	
		- processing dir	